Difference between revisions of "Quantum light: states and dynamics"

From amowiki
Jump to navigation Jump to search
imported>Agrier
imported>Psivaraj
(Added tag: 'phase probability')
 
(8 intermediate revisions by 2 users not shown)
Line 15: Line 15:
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
  
* L2: [[Photons and statistics]] ([http://cua.mit.edu/8.422/HANDOUTS/chapter2-quantum-light-part-1.pdf 2007 pdf])
+
* L2: [[Photons and statistics]]
* L3: [[Non-classical states of light]] ([http://cua.mit.edu/8.422/HANDOUTS/chapter2-quantum-light-part-2.pdf 2007 pdf])
+
* L3: [[Non-classical states of light]]
* L4: [[Single photons]] ([http://cua.mit.edu/8.422/HANDOUTS/chapter2-quantum-light-part-3.pdf 2007 pdf])
+
* L4: [[Single photons]]
* L5: [[Entangled Photons]] ([http://cua.mit.edu/8.422/HANDOUTS/chapter2-quantum-light-part-4.pdf 2007 pdf])
+
* L5: [[Entangled Photons]] ([http://cua.mit.edu/wikipost/20090222-215055/MIT-8422-lecture-5-chuang-entangled-photons-20feb09a.pdf 2009 pdf])
* L6: [[Interferometry and metrology]] ([http://cua.mit.edu/8.422/HANDOUTS/chapter2-quantum-light-part-5-interferometry.pdf 2007 pdf])
+
* L6: [[Interferometry and metrology]] ([http://cua.mit.edu/wikipost/20090224-231859/MIT-8422-lecture-6-interferometers-and-metrology-23feb09.pdf 2009 pdf])
 
+
* L7: [[Atoms and cavities]] ([http://cua.mit.edu/wikipost/20090226-173514/MIT-8422-lecture-7-atoms-and-cavities-25feb09.pdf 2009 pdf])
  
 
== References & Handouts ==
 
== References & Handouts ==
Line 32: Line 32:
 
[[Category:8.422|2]]
 
[[Category:8.422|2]]
 
[[Category:Quantum Light|0]]
 
[[Category:Quantum Light|0]]
 +
[[Category:phase probability]]

Latest revision as of 14:50, 23 February 2015

This chapter is a study of the quantum properties of light, specifically, single-mode monochromatic light. We begin by considering the states in which quanta of the electromagnetic field, photons, may exist. We describe how these states are mathematically represented, and how they transform under simple physical operations, such as propagation through free space, and through optical beamsplitters. We also consider how two modes of light may relate to each other, in particular through entanglement, a purely quantum-mechanical property which can be a useful resource. Throughout this study of the quantum nature light, we develop an intuition and a language for quantum states and behaviors which may be applied not just to light, but also, to analogous states of matter.


References & Handouts

A good, modern book on quantum optics (and some atomic physics) is "Exploring the Quantum: Atoms, Cavities, and Photons," by Haroche and Raimond. See Chapter 3, "Of spins and springs" for a lively discussion about photons, and photons coupled to an atom.