Difference between revisions of "Quantum light: states and dynamics"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Agrier
Line 1: Line 1:
 
This chapter is a study of the quantum properties of light,
 
This chapter is a study of the quantum properties of light,
 
specifically, single-mode monochromatic light.  We begin by
 
specifically, single-mode monochromatic light.  We begin by
considering the states in which quanta of the electromatic field,
+
considering the states in which quanta of the electromagnetic field,
 
photons, may exist.  We describe how these states are mathematically
 
photons, may exist.  We describe how these states are mathematically
 
represented, and how they transform under simple physical operations,
 
represented, and how they transform under simple physical operations,

Revision as of 19:00, 11 February 2009

This chapter is a study of the quantum properties of light, specifically, single-mode monochromatic light. We begin by considering the states in which quanta of the electromagnetic field, photons, may exist. We describe how these states are mathematically represented, and how they transform under simple physical operations, such as propagation through free space, and through optical beamsplitters. We also consider how two modes of light may relate to each other, in particular through entanglement, a purely quantum-mechanical property which can be a useful resource. Throughout this study of the quantum nature light, we develop an intuition and a language for quantum states and behaviors which may be applied not just to light, but also, to analogous states of matter.



References & Handouts

A good, modern book on quantum optics (and some atomic physics) is "Exploring the Quantum: Atoms, Cavities, and Photons," by Haroche and Raimond. See Chapter 3, "Of spins and springs" for a lively discussion about photons, and photons coupled to an atom.