Radial Schrodinger equation for central potentials
Stationary solutions of the time dependent Schrodinger equation
![{\displaystyle i\hbar {\frac {\partial \psi ({\bf {{r},t)}}}{\partial t}}=H({\bf {{r})\psi ({\bf {r}},t)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/173a09e14ba1d0ef088e5bfd58ea5914427ad63c)
(
is the Hamiltonian operator) can be represented as
![{\displaystyle \psi {({\bf {r}},t)}=e^{-iE_{n}t/\hbar }\psi _{n}({\bf {{r}),}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac5857098fe3d74282c8e08d8911de60fe42d19)
where
stands for all quantum numbers necessary to label the state. This leads to the time-independent Schrodinger equation
![{\displaystyle [H({\bf {r}})-E_{n}]\psi _{n}({\bf {{r})=0}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2203017f2e2246ba78bf58782a2a8ed897107924)
A pervasive application of this equation in
atomic physics is fo the case of a spherically symmetric
one-particle system of mass
. In this case the
Hamiltonian is
![{\displaystyle {\begin{aligned}H&\equiv {\rm {Kinetic~Energy}}~+~{\rm {Potential~Energy}}\\&=p^{2}/2\mu +V(r)={\frac {-\hbar ^{2}\nabla ^{2}}{2\mu }}+V(r)\\&=-{\frac {\hbar ^{2}}{2\mu }}{\left[{\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}{\left(r^{2}{\frac {\partial }{\partial r}}\right)}+{\frac {1}{r^{2}\sin \theta }}{\frac {\partial }{\partial \theta }}{\left(\sin \theta {\frac {\partial }{\partial \theta }}\right)}+{\frac {1}{r^{2}\sin ^{2}\theta }}{\frac {\partial ^{2}}{\partial \phi ^{2}}}\right]}+V(r)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ad64e65dfb9f31cdc63fd480887a0d589f6fe8d)
where the kinetic energy operator
has been written in
spherical coordinates. Because
is spherically symmetric, the angular
dependence of the solution is characteristic of spherically
symmetric systems in general and may be factored out:
![{\displaystyle \psi _{n\ell m}({\bf {r}})=R_{n\ell }(r)Y_{\ell m}(\theta ,\phi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59c74bb94634454a8bc7336b34487b199d9121ad)
are the spherical harmonics and
is the
eigenvalue of the operator for the orbital angular momentum,
,
![{\displaystyle L^{2}Y_{\ell m}=\ell (\ell +1)\hbar ^{2}Y_{\ell m}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24d50e93fbe88fe9f949f274698b0e67a85b84af)
and
is the eigenvalue of the projection of
on the
quantization axis (which may be chosen at will)
![{\displaystyle L_{z}Y_{\ell m}=m\hbar Y_{\ell m}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc778ebe4b284b405210b3c1e4d59fa3832a8ea4)
With this substitution the time
independent radial Schrodinger equation becomes
![{\displaystyle {\frac {1}{r^{2}}}{\frac {d}{dr}}{\left(r^{2}{\frac {dR_{n\ell }}{dr}}\right)}+{\left[{\frac {2\mu }{\hbar ^{2}}}{\left[E_{n\ell }-V(r)\right]}-{\frac {\ell (\ell +1)}{r^{2}}}\right]}R_{n\ell }=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/969ca6bedf92900bda3f076237a40179b01c1759)
This is the equation which is customarily solved for the hydrogen
atom's radial wave functions. For most applications (atoms,
scattering by a central potential, diatomic molecules) it is more
convenient to make a further substitution.
![{\displaystyle R_{n\ell }(r)=y_{n\ell }(r)/r}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b12365eebc7c37ffe6f69efa47a097895d61b07d)
which leads to
- {EQ_secpten}
![{\displaystyle {\frac {d^{2}y_{n\ell }(r)}{dr^{2}}}+{\left[{\frac {2\mu }{\hbar ^{2}}}[E_{n\ell }-V(r)]-{\frac {\ell (\ell +1)}{r^{2}}}\right]}y_{n\ell }(r)=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/279fd229ad119851a0d0f02db2990bb8c6edc661)
with the boundary condition
. This equation is
identical with the time independent Schrodinger equation for a
particle of mass
in an effective one dimensional potential,
![{\displaystyle V^{\rm {eff}}(r)=V(r)+L^{2}/(2\mu r^{2})=V(r)+{\frac {\hbar ^{2}\ell (\ell +1)}{2\mu r^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7075255df7ac1a2dac23952e000e0cfbf169a14d)
The term
is called the
centrifugal potential, and adds to the actual potential the
kinetic energy of the circular motion that must be present to
conserve angular
momentum.
Radial equation for hydrogen
The quantum treatment of hydrogenic atoms or ions appears in
many textbooks and we present only a summary. If you are interested in further details, the most comprehensive
treatment of hydrogen is the classic text of Bethe and Salpeter, { The
Quantum Mechanics of One- and Two-Electron
Atoms, H. A. Bethe and E. E. Salpeter, Academic Press (1957). Messiah's text book is also excellent.
For hydrogen Eq. \ref{EQ_secpten} becomes
- {EQ_rehone}
![{\displaystyle {\frac {d^{2}y_{n\ell }(r)}{dr^{2}}}+{\left[{\frac {2\mu }{\hbar ^{2}}}\left[E_{n}+{\frac {e^{2}}{r}}\right]-{\frac {\ell (\ell +1)}{r^{2}}}\right]}y_{n\ell }(r)=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66ee354606ea1ea840f353e32f914d91d1ec6f9d)
First look at this as
, the dominant terms are
![{\displaystyle {\frac {d^{2}y}{dr^{2}}}-{\frac {\ell (\ell +1)}{r^{2}}}y=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/778d98163fc7b4d623617ddbc6d2378da99cb8fe)
for any value of
. It is easily verified that the two
independent solutions are
- {EQ_rehthree}
![{\displaystyle y\sim r^{\ell +1}~{\mbox{and}}~y\sim r^{-\ell }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/265b4d1e5d3be68b27829938608669988f40a7a2)
For
the only normalizable solution is
.
Question: What happens to these arguments for
? What
implications does this have for the final solution? Messiah has a
good discussion of this.
We look next at the solution for
where we
may investigate a simpler equation if
. For large r:
![{\displaystyle {\frac {d^{2}y}{dr^{2}}}+{\frac {2\mu E}{\hbar ^{2}}}y=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e75d4b1bd0d9e10e3019dff4a5cc2fc34e10597)
If
, this equation has oscillating solutions corresponding
to a free particle. For
the equation has exponential
solutions, but only the decaying exponential is physically
acceptable (i.e.. normalizable)
- {EQ_rehfive}
![{\displaystyle R(r)=y(r)/r={\frac {1}{r}}e^{(-2\mu E/\hbar ^{2})^{\frac {1}{2}}r}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b4d0a074b47ad3e9c15a148b1c9af5c239e85e7)
When
, it is possible to obtain physically reasonable
solutions to Eq.\ \ref{EQ_secpten}
(or indeed any bound state problem) only for certain
discrete values of
, its eigenvalues. This situation arises
from the requirement that the radial solution be normalizable, which requires
that
, or alternatively, that
vanishes
sufficiently rapidly at large r.).
Eq.\ref{EQ_rehone} is a prescription
for generating a function
for arbitrary
given
and
at
any point. This can be solved exactly for hydrogen. For other central
potentials, one can find the eigenvalues and eigenstates by
computation. One proceeds as follows:
Select a trial eigenvalue,
. Starting at large
a
"solution" of the form of Eq.\ \ref{EQ_rehfive} is selected and
extended in to some intermediate value of
. At the
origin one must select the solution of the form
(Eq. \ref{EQ_rehthree}); this "solution" is then
extended out to
. The two "solutions" may be made to have
the same value at
by multiplying one by a constant;
however, the resulting function is a valid solution only if the
first derivative is continuous at
, and this occurs only for
a discrete set of
. The procedure described here is,
in fact, the standard Numerov-Cooley algorithm for finding bound
states. Its most elegant feature is a
procedure for adjusting the
trial eigenvalue using the discontinuity in the derivative that converges to the
correct energy very rapidly.
For the hydrogen atom, the eigenvalues can be determined
analytically. The substitution
- {EQ_rehsix}
![{\displaystyle y_{\ell }(r)=r^{\ell +1}e^{-(-2\mu E/\hbar ^{2})^{1/2}r}v_{\ell }(r)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc680416a2af58a7d0bd62c5c3f6c48e8400f5c9)
leads to a particularly simple equation. To make it
dimensionless, one changes the variable from
to
![{\displaystyle x=[2(-2\mu E)^{1/2}/\hbar ]r}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9dd35bf514a08ac0f1d072604df1b1e3f67f1093)
so the exponential in Eq. \ref{EQ_rehsix} becomes
, and defines
- {EQ_reheight}
![{\displaystyle v={\frac {\hbar }{(-2\mu E)^{1/2}a_{o}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d44754fec6bd76a16d4229490ac29e20e5b23b64)
where
is the Bohr radius:
![{\displaystyle {\left[x{\frac {d^{2}}{dx^{2}}}+(2\ell +2-x){\frac {d}{dx}}-(\ell +1-v)\right]}v_{\ell }=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/337ad02367cc7f4645e0e211a4e0df9cb1f7e998)
This is a Laplace equation and its solution is a confluent
hypergeometric series. To find the
eigenvalues one now tries a Taylor series
![{\displaystyle v_{\ell }(x)=1+a_{1}x+a_{2}x^{2}+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/80f9726810e8a3fe7de139e5bc2d45d16603c656)
for
. This satisfies the equation only if the
coefficients of each power of x are satisfied, i.e.
- {EQ_reheleven}
![{\displaystyle {\begin{array}{rcl}x^{o}:&&(2\ell +2)a_{1}-(\ell +1-v)=0\\x^{1}:&&2(2\ell +3)a_{2}-(\ell +2-v)a_{\ell }=0\\x^{p-1}:&&p(2\ell +1+p)a_{p}-(\ell +p-v)a_{p-1}=0\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14592b50a2ef3c430ea3f7a070a32972b4671268)
The first line fixes
, the second then determines
, and
in general
![{\displaystyle a_{p}={\frac {(\ell +p-v)}{p(2\ell +1+p)}}a_{p-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9a7f24ff1b6bbaafde5bcaf5cf23adec010db72)
In general Eq.\ \ref{EQ_reheleven} will give a
coefficient on the order of 1/
! so
![{\displaystyle v_{\ell }(x)\sim \sum _{p=0}x^{p}/p!=e^{x}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44a16f468885870408f6300ba87956d093cd74a1)
This spells disaster because it means
diverges. The only way in which this can be
avoided is if the series truncates, i.e. if v is an integer:
![{\displaystyle v=n=n^{\prime }+\ell +1~~~~~~~~~~n=0,1,2,\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e16f167df14d1a2f48c5e27593b71686f0310c78)
so that
, will be zero and
will have
nodes. Since
, it is clear that you must look
at energy level
to find a state with angular
momentum
(e.g.. the 2
configuration does not exist).
This gives the eigenvalues of hydrogen (from Eq. \ref{EQ_reheight})
![{\displaystyle E_{n}=-{\frac {1}{2}}\alpha ^{2}\mu c^{2}/(n^{\prime }+\ell +1)^{2}=-{\frac {1}{2}}{\frac {\mu (e^{2}/4\pi \epsilon _{o})^{2}}{\hbar ^{2}}}{\frac {1}{n^{2}}}=-{\frac {hcR_{H}}{n^{2}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e084ec9860d8de22c71df84a23de1ec6ab6d9131)
which agrees with the Bohr formula.