We may transform the GPE into a hydronamic equation for a superfluid,
![{\displaystyle {\frac {\partial |\psi |^{2}}{\partial t}}+\nabla {\frac {\hbar }{2mi}}\left({\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*}}\right)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a5678846fa0d78be4db36964886b485f73561ab)
by introducing flow, from current
,
![{\displaystyle v={\frac {j}{n}}={\frac {\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*}}{2mi|\psi |^{2}}}\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c845b88f022f168536a6894399818d1bd2f1dd73)
This gives the continuity equation
![{\displaystyle {\frac {\partial n}{\partial t}}+\nabla (nv)=0\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21180c36a4b973a4e21fe5e9c3eb62968dde2d29)
Writing
, and noting that the gradient of the
phase gives us the velocity field, we get equations of motion for
and
,
![{\displaystyle -\hbar {\frac {\partial \phi }{\partial t}}=-frac{\hbar ^{2}}{2mf}\nabla ^{2}f+{\frac {1}{2}}mv^{2}+V(r)+U_{0}f^{2}\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f661c560ac48083fa4f1292a71efc3c8327ac1f1)
This reduces to
![{\displaystyle {\begin{array}{rcl}m{\frac {\partial v}{\partial t}}&=&-\nabla (\delta \mu +{\frac {1}{2}}mv^{2}\\\delta \mu &=&v+U_{0}n{\frac {\hbar ^{2}}{2m{\sqrt {n}}}}\nabla ^{2}{\sqrt {n}}-\mu _{0}\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af5097247bc45c95d06a26429686cfd59c75cd13)
The Thomas-Fermi approximation is now applied, neglecting
,
but keeping
, giving
![{\displaystyle m{\frac {\partial ^{2}\delta n}{\partial t^{2}}}=U_{0}\nabla (n_{0}\nabla (\delta n))\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0042b907cb900e4ef055ce03a50ebe2991365d65)
a wave equation for the density. For
constant,
is the
speed of sound squared,
. The Thomas-Fermi solution
for
gives collective modes of the condensate. A droplet of
condensate can have shape resonances, waves, and many other physical
behaviors, captured by these solutions.