Ideal Bose Gas

From amowiki
Revision as of 17:46, 3 May 2017 by imported>Junruli
Jump to navigation Jump to search

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures very close to 0K (usually ~100nK in experiments). Under such conditions, a large fraction of bosons occupies the lowest quantum state, at which point macroscopic quantum phenomena become apparent.

Overview

In this section, we summarize some basic and useful thermodynamic results for Bose-Einstein condensation in a uniform, non-interacting gas of bosons. Most of the discussion here will be limited to 3D case. Physics for lower dimensions will be mentioned in the end.

Thermodynamics of a Bose Gas

Phase Space Density

The fundamental difference between a BEC and a classical gas is the occupancy of a single-particle state. In a classical gas, the mean occupation number for a single quantum state satisfies the Boltzmann distribution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n_{\nu} \rangle = e^{-(\epsilon_{\nu}-\mu)/kT} } which is much less than unity. This feature is qualitatively captured by the defined as (3D, homogeneous gas)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_D = n\lambda_T^3 \,, }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_T = (2\pi\hbar^2/mkT)^{1/2}} is the thermal de Broglie wavelength.

Some typical numbers for

  • Classical gas
    • Atom density Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \sim 10^{25} \text{m}^{-3}}
    • Interatomic distance
    • Thermal de Broglie wavelength Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_T \sim 10^{-2} \text{nm}(T = 300K) }
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_D \sim 10^{-8} }
  • BEC in dilute gas
    • Atom density Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \sim 10^{20} \text{m}^{-3}}
    • Interatomic distance
    • Thermal de Broglie wavelength Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_T \sim 10^{3} \text{nm}(T = 100nK) }
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_D \sim 10^{2} }

The Bose-Einstein Distribution

For non-interacting bosons in thermodynamic equilibrium, the mean occupation number of the single-particle state Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu } is

Density of States

Thermaldynamic Properties

The thermaldynamic properties can be readily calculated from the Bose distributions and sum over all the states. Teh total energy

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \underset{\nu}{\sum}\langle n_{\nu} \rangle E_{\nu} \,. }

Padagogical Example