We describe here a rigorous derivation of atom-photon
interactions. Our
overall goal is to arrive at a Hamiltonian description for the energy
of a system of atoms, photons, and atoms interacting with photons
through the radiation field.
The basic interaction we will obtain is the dipole interaction
Hamiltonian,
![{\displaystyle H_{int}=-{\vec {d}}\cdot {\vec {E}}\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3b9f9e023d3bb60e7892e319874aaa8877947ab)
where
is the atom's dipole moment, and
is the
electric field at the position of the atom. In the end, the electric
field will be quantized, and described by operators
and
.
Quantum electrodynamics
The classical Hamiltonian which describes one particle
![{\displaystyle H={\frac {p^{2}}{2m}}+V(r)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ff950d2d92d090ffe14b78b7f74795724b7f156)
and this is transformed into the quantum picture by enforcing the
commutation relation
. We will do the same for an
atom interacting with light.
Let us begin with Maxwell's equations.
![{\displaystyle {\begin{array}{rcl}\nabla \cdot E(r,t)&=&{\frac {1}{\epsilon _{0}}}\rho (r,t)\\\nabla \cdot B(r,t)&=&0\\\nabla \times E(r,t)&=&-\partial _{t}B(r,t)\\\nabla \times B(r,t)&=&{\frac {1}{c^{2}}}\partial _{t}E(r,t)+{\frac {1}{\epsilon _{0}c^{2}}}j(r,t)\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cee5017e86120ccea1ac328d283c8b8b882f200d)
How many of the field components are true degrees of freedom? We can
understand this by taking a spatial Fourier transform. It turns out
that the longitudinal electric field is not a free degree of freedom.
We obtain as the essential equations the vector potential
![{\displaystyle {\begin{array}{rcl}E(r,t)&=&\nabla U(r,t)-\partial _{t}A(r,t)\\B(r,t)&=&\nabla \times A(r,t)\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/11d4f2019c2a1360048e847c04331ace08e78388)
In the Coulomb gauge,
, such that the scalar potential
is
![{\displaystyle U(r,t)={\frac {1}{4\pi \epsilon _{0}}}\int d^{3}r'{\frac {\rho (r',t)}{|r-r'|}}\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb745bc5c0b8990a6e219679c718e779f0cf8ac)
Keep in mind that the equation of motion is now a second order
differential equation for the vector potential. All that is needed to
specify the field evolution is thus the initial values of
and
, the transverse vector potential. The only free
degrees of freedom are the two components of the transverse vector
potential.
We can further understand this by decomposing the Fourier
representation of the field and potential in terms of its normal modes,
![{\displaystyle {\begin{array}{rcl}\alpha (k,t)&=&\lambda (k)\left[E_{\perp }(k,t)-c{\frac {\vec {k}}{k}}\times B(k,t)\right]\\&=&\lambda (k)[-{\dot {A}}_{\perp }(k,t)+i\omega A_{\perp }(k,t)]\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67c517e072d7529706df01d3e067750c92f6f648)
Using this, we can represent the equations of motion for the field as
![{\displaystyle {\dot {\alpha }}(k,t)+i\omega \alpha (k,t)={\frac {i}{\sqrt {2\epsilon _{0}\hbar \omega }}}j_{\perp }(k,t)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fb0a44d84229827f725a88f2bcbea940eb5f28)
Note
![{\displaystyle {\vec {A}}_{\perp }(r)=\int d^{3}k\sum _{\epsilon }A_{\omega }[{\vec {\epsilon }}\alpha _{\epsilon }(k)e^{i2r}+h.c.]\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fdd0298452baf0c5e1238d2c8cbed8c817fbd69)
in the normal mode decomposition, where we now use
as
the photon polarization, which carries the vector direction of the
potential.
Let us now quantize the field. We identify an equivalence between
and
with
and
, and quantize accordingly. The
commutator is
![{\displaystyle [a_{\epsilon }(k),a_{\epsilon '}^{\dagger }(k')]=\delta _{\epsilon \epsilon '}\delta (k-k')\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d41b7a0c3ee5c253162919a8f2bbbfbdb8c31703)
Energy in the radiation field
It is helpful to go back to consider for a moment what the energy in
the field is. Recall that
![{\displaystyle {\begin{array}{rcl}H&=&{\frac {\epsilon _{0}}{2}}\int d^{3}r({\vec {E}}^{2}+c^{2}{\vec {B}}^{2})\\&=&\int d^{3}rE_{\parallel }^{2}+{\frac {\epsilon _{0}}{2}}\int d^{3}r(E_{\perp }^{2}+c^{2}B^{2})\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/254c57a2b8b97cbed9607562b9bb4bd994489840)
where we can identify
![{\displaystyle \int d^{3}rE_{\parallel }^{2}={\frac {1}{8\pi \epsilon _{0}}}\int \int d^{3}rd^{3}d'{\frac {\rho (r)\rho (r')}{|r-r'|}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/818a9e627d236b1383685c7964cde5341b1bf2b4)
as the energy of the Coulomb field due to the charge configuration.
This part of the energy is static, with respect to time evolution of
the field. The second term is the energy is the transverse component
of the field,
, the radiation energy, which we can
understand by introducing again our expression for the vector
potential.
![{\displaystyle {\begin{array}{rcl}H_{\rm {trans}}=\epsilon _{0}\int d^{3}k\left[{\frac {\Pi _{\epsilon }^{2}\Pi _{e}p}{\epsilon _{0}^{2}}}+k^{2}c^{2}A_{\epsilon }^{*}A_{\epsilon }\right]\,,\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0129fd8d2e2e987fd0c6b8fe8efad0df69a4038)
where
is identified as the
conjugate momentum. This looks much like a simple harmonic oscillator
Hamiltonian. Now introduce normal modes, using
![{\displaystyle \alpha \sim [-{\dot {A}}_{\perp }+i\omega E_{\perp }]\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6f6b7bd01b94893a41e0443da2cc87c19e5e1c2)
This gives
![{\displaystyle {\begin{array}{rcl}H_{\rm {trans}}=\int d^{3}k\sum _{\epsilon }{\frac {\hbar }{2}}[\alpha _{\epsilon }^{*}\alpha _{e}p+\alpha _{\epsilon }\alpha ^{*}\epsilon ]\,,\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4de3848c15d4dc6fa117a02a7059fd45ade017aa)
a purely classical expression for energy in the radiation
field. Where does
come from? It enters in the constant
relating the normal modes with
. It is just a unit used in
the definitions at this moment, which is convenient to use because
later on
appears in the quantum expression of the energy.
This expression for energy is really identical to that for the
classical simple harmonic oscillator,
![{\displaystyle H=()p^{2}+()q^{2}\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8c393615f9a4f2f8ab32278f3ad6956c95539c2)
where
. For this classical oscillator, it is helpful
to introduce a variable describing superpositions of
, giving
![{\displaystyle H={\frac {\hbar \omega }{2}}(p^{2}+q^{2})={\frac {\hbar }{2}}(a^{*}a+aa^{*})\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dafb10b6fb0037a3cac5321de47abd6fabf39b9e)
When quantized, this becomes
.
We conclude that the radiation field is just a bunch of oscillators,
with one per
vector, and each one is described in its quantized
form by the Hamiltonian
.
Beware, however, that not all expressions for the energy are valid
models for the radiation field; it is essential that they also
correspond to a valid Lagrangian for the system. We have also not
provide a relativistically covariant formulation of the radiation
field.
Quantum description of the radiation field
Let us now go back to the quantum description of the radiation field.
Keep in mind that the naive approach of using Cartesian coordinates,
without eliminating the longitudinal field, would fail miserably,
because
![{\displaystyle [A_{i}(r),\Pi _{j}(r')]\neq i\hbar \delta _{ij}(r-r')\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3fda91edab69a3843bca959c6bacedd207f7171)
The treatment above, using the vector potential, is thus essential.
We now have as the field definitions, in terms of the quantum operators,
![{\displaystyle {\begin{array}{rcl}A_{\perp }(r)&=&\int d^{3}k\sum _{\epsilon }A_{\omega }[\epsilon a_{\epsilon }(k)e^{ik\cdot r}+\epsilon a_{\epsilon }^{\dagger }(k)e^{-ik\cdot r}]\\E_{\perp }(r)&=&\int d^{3}k\sum _{\epsilon }iE_{\omega }[\epsilon a_{\epsilon }(k)e^{ik\cdot r}-\epsilon a_{\epsilon }^{\dagger }(k)e^{-ik\cdot r}]\\B(r)&=&\int d^{3}k\sum _{\epsilon }iB_{\omega }[(k\times \epsilon )a_{\epsilon }(k)e^{ik\cdot r}-(k\times \epsilon )a_{\epsilon }^{\dagger }(k)e^{-ik\cdot r}]\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d297e8ca3ee117048179ed485d88843fb5ded00)
The particle operators are
![{\displaystyle {\begin{array}{rcl}\rho &=&\sum _{\alpha }q_{\alpha }\delta (r-r_{\alpha })\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2084944dc7186433e92af87d59d41fd3a5732185)
Coupling of atoms and the radiation field
The total Hamiltonian for the radiation field and charges is
![{\displaystyle H=\sum _{\alpha }{\frac {1}{2m_{\alpha }}}\left[p_{\alpha }-q_{\alpha }A_{\perp }(r_{\alpha })\right]^{2}+\sum _{\alpha }\left(-g{\frac {q}{2m_{\alpha }}}\right)S_{\alpha }\cdot B(r_{\alpha })+V_{\rm {Coul}}+H_{R}\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57342684653bd741dcf67d22ada02082298e0ceb)
where the second term, with
has been
added by hand, and describes spin interacting with the magnetic field,
which will be discussed later. It can be derived from first
principles by starting with the Dirac equation, expressed in the
non-relativistic limit. The important new term, compared with
standard nonrelativistic quantum mechanics, is the replacement of
momentum
with
.
The Coulomb interaction energy is standard.
The radiation field energy is
.
Simplifying this, we may write the total Hamiltonian as
![{\displaystyle H=H_{P}+H_{R}+H_{I}\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/307841094a848f6fddc25069fa2624c32feb7027)
where
is the particle Hamiltonian,
![{\displaystyle H_{P}=\sum _{\alpha }{\frac {p_{\alpha }^{2}}{2m_{\alpha }}}+V_{\rm {Coul}}\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b61fffc0e874c8d7214509031fd726a5e2459254)
is the Hamiltonian for the radiation field, and
can be
written as the sum of three parts,
,
and
![{\displaystyle {\begin{array}{rcl}H_{I1}&=&-\sum _{\alpha }{\frac {q_{\alpha }}{m_{\alpha }}}p_{\alpha }A_{\perp }(r_{\alpha })\\H_{I1}^{S}&=&-\sum _{\alpha }g_{\alpha }{\frac {q_{\alpha }}{2m_{\alpha }}}S_{\alpha }\cdot B(r_{\alpha })A_{\perp }(r_{\alpha })\\H_{I2}&=&\sum _{\alpha }{\frac {q_{\alpha }}{2m_{\alpha }}}A_{\perp }^{2}(r_{\alpha })\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/43c49e71d027b210fb66027dc0fd6086163c17e8)
For atoms,
, typically.
The dipole approximation
Typically, for atomic physics, the wavelength of radiation is much
much larger than the size of the atom, so that we may write the main
interaction between atoms and the radiation field as
![{\displaystyle H_{int}=H_{I1}={\frac {q}{m}}{\vec {A}}_{0}\langle 2|{\vec {p}}e^{ikr}|1{\rangle }\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7d6653da400ef6d58efbb671730d68b2ffb264)
where
. This simplifies to
![{\displaystyle H_{int}={\frac {iq{\vec {E}}_{0}}{m\omega }}\langle 2|p|1{\rangle }\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8e8fdb4d086de832c524fddf6066d31ffade9c)
in the limit that the field wavelength is much larger than the atom,
so we can take
. Since
, and
![{\displaystyle \langle 2|[r,H]|1\rangle =(E_{1}-E_{2})\langle 2|r|1{\rangle }\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee910a86bee38bbd4500244d533a6b3c4069a476)
then using
gives
![{\displaystyle \langle 2|p|1\rangle =-im\omega _{12}\langle 2|r|1{\rangle }\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80d63dcc66425d8541e6ee476e1f821e778a408a)
The interaction energy is thus
![{\displaystyle H_{int}=q{\vec {E}}_{0}{\frac {\omega _{12}}{\omega }}\langle 2|{\vec {r}}|1{\rangle }\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2202b4c82ad2eeb465a690efd2fb70e74b4fc0f7)
which in the limit of a resonant interaction, becomes
![{\displaystyle H_{int}=q{\vec {E}}_{0}\langle 2|{\vec {r}}|1\rangle \sim -{\vec {d}}\cdot {\vec {E}}\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/499ec6d9e6658483b8fd3d37d1000e1d7a9e16da)
Questions that arise in this loose derivation include: what happens
for off-resonant interactions? And what happens with the other
interaction term we derived above,
?
A rigorous way to obtain the full solution, which is essentially the
same as that sketched above, is given in API. It involves using a
canonical transformation with the operator
![{\displaystyle T=\exp \left[-{\frac {i}{\hbar }}{\vec {d}}\cdot A_{\perp }\right]\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/95bcb7504133810b0b9bbf0fdd8be1b5f08250af)
which is just a displacement operator acting on momentum, that
transforms
into
, in a new frame of reference. We
approximate
with
, which is valid in the dipole
approximation, in which
. The Hamiltonian in this
frame of reference is
![{\displaystyle {\begin{array}{rcl}H'&=&THT^{\dagger }\\&\sim &{\frac {p^{2}}{2m}}+V_{Coul}+\sum _{j}{\frac {1}{2\epsilon _{0}L^{3}}}(\epsilon _{j}\cdot d)^{2}+\sum _{j}\hbar \omega _{j}(a_{j}^{\dagger }a+1/2)-d\cdot \sum _{j}E_{\omega _{j}}[ia_{j}\epsilon _{j}-ia_{j}^{\dagger }\epsilon _{j}]\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5999415bbdb34f0981a62d09fbe874c23c52123a)
In this frame, the dipole interaction energy appears explicitly. The
transformed electric field is
![{\displaystyle {\begin{array}{rcl}E_{\perp }'(r)&=&TE_{\perp }T^{\dagger }\\&=&E_{\perp }(r)-{\frac {1}{\epsilon _{0}}}P_{\perp }(r)\,.\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ef77112b4cbf9fde423085266f9a156b5a282351)
The interaction Hamiltonian is
![{\displaystyle H_{I}'=-d\cdot D'(0)/\epsilon _{0}=-d\cdot E_{\perp }(0)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3b765d1052741069c2d89e2aebb5215e2ef7ea28)
Note that this formulation already takes into account the
polarizability of matter, and the relation between
and
.
References