This section deals with how atoms behave in
static electric fields. The method is straightforward,
involving second order perturbation
theory. The treatment describes the effects of symmetry on the
basic interaction, polarizability, and the concept of oscillator
strength.
Perturbation Theory of Polarizability
We will find the energy and polarizability of an atom in
a static field along the +z direction. We apply perturbation
theory taking to describe the unperturbed atomic system and
Non-degenerate eigenstates have to be eigenstates of parity. Since is odd under parity operation, parity requires that
. So
the first order perturbation vanishes. To second order, the energy
is given by
If we define now the polarizability in state as
- {EQ_polarsix}
we obtain
The dipole moment is the
expectation value of the dipole operator,
using the first order perturbed state vector.
where the sum is over Only the term will
contribute, and we can express the induced dipole moment by the polarizability:
Note that the Stark shift is
and not equal to
. is the expectation value for the electrostatic potential energy of the dipole moment, but the total energy change is only one half of this since energy is needed to admix excited states into the ground state.
Note that polarizability has the dimensions of length, i.e. volume.
As an example, for the ground state of hydrogen we can obtain a
lower limit for the polarizability by considering only the
contribution to the sum of the state. Values for the various
moments in hydrogen are given in Bethe and Salpeter, Section 63.
Using = 1.666, and , we obtain atomic units (i.e. ).
The polarizability of the ground state of hydrogen can be
calculated exactly. It turns out that the state makes the
major contribution, and that the higher bound states contribute
relatively little. However, the continuum makes a significant
contributions. The exact value is 4.5.
To put the above result for the polarizability in perspective, note that the potential
of a conducting sphere of radius in a uniform electric field
is given by
The induced dipole moment is , so that the
polarizability is . For the ground state of hydrogen,
, so to a crude approximation, in an electric
field hydrogen behaves like a conducting sphere.
Polarizability may be approximated easily, though not accurately,
using Unsold's approximation in which the energy term in the
denominator of Eq. \ref{EQ_polarsix} is replaced by an average
energy interval . The sum can then be
evaluated using the closure rule . (Note
that the term does not need to be excluded from the sum,
since .). With this approximation,
For hydrogen in the ground state, . If we
take the average excitation energy to be ,
the result is .
Beyond the quadratic Stark effect
It should be obvious from the previous discussion that the Stark effect for a state of is quadratic only when
|
(EQ_ beyondone)
|
when is the nearest state of opposite parity to .
If is the ground state, we can expect Hartree and (virial theorem). Hence the Stark shift should be quadratic if the field is well below the critical value
|
(EQ_ beyondtwo)
|
[ is atomic unit of field] —a field three orders of magnitude in excess of what can be produced in a laboratory except in a vanishingly small volume.
If is an excited state, say , this situation changes <it>
dramatically
</it>. In general, the matrix element and to the next level of opposite parity depends on the quantum defect:
|
(EQ_ beyondthree)
|
Thus the critical field is lowered to
|
(EQ_ beyondfour)
|
Considering that quantum defects are typically when is the largest of an electron in the core), it is clear that even 1 V/cm fields will exceed for higher levels if . Large laboratory fields ( V/cm) can exceed even for states if .
When the electric field exceeds states with different but the same are degenerate to the extent that their quantum defects are small. Once exceeds the number of core electrons, these states will easily become completely mixed by the field and they must be diagonalized exactly. The result is eigenstates possessing apparently permanent electric dipoles with a resulting linear Stark shift (see following figure). As the field increases, these states spread out in energy. First they run into states with the same but different quantum defects; then the groups of states with different begin to overlap. At this point a matrix containing all states with greater or equal to must be diagonalized. The only saving grace is that the lowest states do not partake in this strong mixing; however, the states near the continuum always do if there is an -field present.\
The situation described above differs qualitatively for hydrogen since it has no quantum defects and the energies are degenerate. In this case the zero-field problem may be solved using a basis which diagonalizes the Hamiltonian both for the atom above and also in the presence of an electric field. This approach corresponds to solving the H atom in parabolic–ellipsoidal coordinates and results in the presence of an integral quantum number which replaces . The resulting states possess permanent dipole moments which vary with this quantum number and therefore have linear Stark effects even in infinitesimal fields. Moreover the matrix elements which mix states from different manifolds vanish at all fields, so the upper energy levels from one manifold cross the lower energy levels from the manifold above without interacting with them.\
The following example shows the high field stark effect for Li. Only the term in Li has an appreciable quantum defect, and it has been suppressed by selecting final states with .
The dramatic difference between the physical properties of atoms with and the properties of the same atoms in their ground state, coupled with the fact that these properties are largely independent of the type of atom which is excited, justifies the application of the name Rydberg atoms to highly excited atoms in general.\
File:06-E-FIELD/Stark pattern.eps Stark effect and field ionization in Li for levels with
. Each vertical line represents a measurement at that field of the number of atoms excited (from the
state) by radiation whose energy falls the indicated amount below the ionization limit. Thus the patterns made by absorption peaks at successive field strengths represent the behavior of the energy levels with increasing field. At zero field the levels group according to the principal quantum number
; at intermediate field the levels display a roughly linear Stark effect, and at high fields they disappear owing to field ionization. The solid line is the classically predicted ionization field (see next section). Figure taken from Littman, Kash and Kleppner.
Field ionization
If an atom is placed in a sufficiently high electric field it will be ionized, a process called <it>
field ionization
</it>. An excellent order of magnitude estimate of the field , required to ionize an atom which is initially in a level bound by energy can be obtained by the following purely classical argument: the presence of the field adds the term to the potential energy of the atom. This produces a potential with a maximum and the atom will ionize if .
The figure shows the combined potential as well as and
|
(EQ_ fieldionone)
|
The appropriate maximum occurs at
|
(EQ_ fieldiontwo)
|
as determined from . Equating and gives
|
(EQ_ fieldionthree)
|
for level with energy and quantum number .
The predictions of this formula for is usually accurate within 20% in spite of its neglect of both quantum tunneling and the change in produced by the field. [This latter deficiency is remedied in the comparison with Li data shown in the preceding part of this section because the eye naturally uses the ionization field appropriate to the perturbed energy of the state rather than its zero-field energy.] Tunneling manifests itself as a finite decay rate for states which classically lie lower than the barrier. The increase of the ionization rate with field is so dramatic, however, that the details of the experiment do not influence the field at which ionization occurs very much: calculations [u'BHR65'] show the ionization rate increasing from /sec to /sec for a 30% increase in the field.\
Oddly enough the classical prediction works worse for H than for any other atom. This is a reflection of the fact that certain matrix elements necessary to mix the states (so the wave function samples the region near ) are rigorously zero in H, as discussed in the preceding part of this section. Hence the orbital ellipse of the electron does not precess and can remain on the side of the nucleus. There its energy will increase with , but it will not spill over the lip of the potential and ionize.
Atoms in an Oscillating Electric Field
There is a close connection between the behavior of an atom in a
static electric field and its response to an oscillating field,
i.e. a connection between the Stark effect and radiation
processes. In the former case, the field induces a static dipole
moment; in the latter case, it induces an oscillating moment. An
oscillating moment creates an oscillating macroscopic
polarization and leads to the absorption and emission of
radiation. We shall calculate the response of an atom to an
oscillating field
where is the polarization vector for the field. For
a weak field the time varying state
of this system can be found from first order time dependent
perturbation theory. We shall write
the electric dipole operator as D = -er. (This is a
change of notation. Previously the
symbol was d.) The Hamiltonian naturally separates into two
parts, ,
where is the unperturbed Hamiltonian and
We shall express the solution of the time dependent Schroedinger
equation in terms of the
eigenstates of .
where . Because of the perturbation
, the 's become time
dependent, and we have
Left multiplying the final two expressions by to
project out the -th terms yields
where . In perturbation theory,
this set of equations is solved
by a set of approximations to labeled .
Starting with
one sets
and solves for the successive approximations by integration.
We now apply this to the problem of an atom which is in its ground
state at , and which is
subject to the interaction of Eq.\ \ref{EQ_atomoef2}. Consequently
, . Substituting in Eq.\ \ref{EQ_atomoef7} and integrating
from to gives
The -1 terms in the square bracketed term arises because it is
assumed that the field was turned on
instantaneously at . They represent transients that rapidly
damp and can be neglected.
The term with , in the denominator is the
counter-rotating term. It can be
neglected if one is considering cases where (i.e. near resonance), but
we shall retain both terms and calculate the expectation value of
the first order time dependent
dipole operator
If we consider the case of linearly polarized light , then
We can write in terms of a polarizability :
This result diverges if . Later,
when we introduce radiative damping, the divergence will be
avoided in the usual way.
Oscillator Strength
Eq.\ \ref{EQ_atomoef11} resemble the oscillating dipole moment of a
system of classical
oscillators. Consider a set of oscillators having charge ,
mass , and natural frequency
, driven by the field . The
amplitude of the motion is given
by
If we have a set of such oscillators, then the total oscillating
moment is given by
This is strongly reminiscent of Eq.\ \ref{EQ_atomoef10}. It is
useful to introduce the concept of
oscillator strength, a dimensionless quantity defined as
where and are any two eigenstates. Note that
is positive if , i.e. for absoprtion, and negative if
Then, Eq.\ \ref{EQ_atomoef10} becomes
Comparing this with Eq.\ \ref{EQ_ostre2}, we see that the behavior
of an atom in an oscillating
field mimics a set of classical oscillators with the same
frequencies as the eigenfrequencies of
the atom, but having effective charge strengths .\\
The oscillator strength is useful for characterizing radiative
interactions and also the
susceptibiltiy of atoms. It satisfies an important sum rule, the
Thomas-Reiche-Kuhn sum rule:
We prove by considering the general Hamiltonian
Using the commutator relation
and the relation , we have
where , and .
However,
Consequently,
where . Thus, we can write
Eq.\ \ref{EQ_ostre3} in either of two forms:
Taking half the sum of these equations and using the closure
relation , we have
We have calculated this for a one-electron atom, but the
application to a Z-electron atom is
straightforward because the Hamiltonian in Eq.\ \ref{EQ_ostre6}
is quite general. In this case
Here is some eigenstate of the system, and the index
describes all the eigenstates of all
the electrons -- including continuum states. In cases where only
a single electron will be
excited, however, for instance in the optical regime of a
"single-electron" atom where the inner core
electrons are essentially unaffected by the radiation, the atom
behaves as if it were a single electron system with .
Note that is positive if , i.e. if the final
state lies above the initial state. Such a transition corresponds to
absorption of a photon. Since , the oscillator strength
for emission of a photon is negative.
Our definition of oscillator strength, Eq.\ \ref{EQ_ostre3},
singles out a particular axis, the -axis, fixed by the
polarization of the light. Consequently, it depends on the orientation
of the atom in the initial state and final states. It is convenient to
introduce the average oscillator
strength (often simply called the oscillator strength), by
letting , summing over the initial state and averaging over the
final state.\\
(This is the conversion followed by Sobelman.) It is evident that
where is the multiplicity factor for state . An
extensive discussion of the sum rules and
their applications to oscillator strengths and transition
momentums can be found in Bethe and
Salpeter, section 6.1. Among the interesting features they point
out is that transitions from an
initial state to a final state on the average have
stronger oscillator strengths for absorption if , and stronger oscillator
strengths for emission if . In other words,
atoms "like" to increase their
angular momentum on absorption of a photon, and decrease it on
emission. The following page gives
a table of oscillator strengths for hydrogen in which this
tendency can be readily identified.
(Taken from {\it The Quantum Mechanics of One- and Two-Electron Atoms}, H.A. Bethe and E.E. Salpeter, Academic Press (1957).)
\caption{
Oscillator strengths for hydrogen. From
Mechanics of One- and Two-Electron Atoms}
Index of refraction
As an application of the expression for the ac polarizability, we now discuss the index of refraction of an atomic gas. What we derive here, is fully sufficient to understand both absorption imaging and phase-contrast imaging used to observe ultracold atomic clouds.
In the case of near resonant light we can neglect the counter-rotating term, and let
Define the natural linewidth (this expression will be derived later in the course)
So we can rewrite the expression for the refractive index:
where, since
we have
In our derivation of the polarizability, we didn't include any damping. The effect of damping is to give the refractive index an imaginary (absorptive) part. Damping can be included by added an imaginary part to the detuning Failed to parse (unknown function "\math"): {\displaystyle \delta<\math>: :<math> \delta \rightarrow \delta + i \frac{\gamma}{2} }
where the first term in brackets corresponds to dispersion and the second to absorption.
The optical density on resonance is:
Note: When the linewidth is determined by spontaneous emission then
the maximum phase shift is at
References