Superfluid Hydrodynamics

From amowiki
Revision as of 01:37, 3 May 2017 by imported>Junruli (Created page with "We may transform the GPE into a hydronamic equation for a superfluid, :<math> \frac{\partial |\psi|^2}{\partial t} + \nabla \frac{\hbar}{2mi} \left( { \psi^*\nabla \psi -...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

We may transform the GPE into a hydronamic equation for a superfluid,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial |\psi|^2}{\partial t} + \nabla \frac{\hbar}{2mi} \left( { \psi^*\nabla \psi - \psi \nabla\psi^* } \right) \,, }

by introducing flow, from current ,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \frac{j}{n} = \frac{\psi^*\nabla \psi - \psi \nabla\psi^*}{2m i |\psi|^2} \,. }

This gives the continuity equation

Writing , and noting that the gradient of the phase gives us the velocity field, we get equations of motion for and ,

This reduces to

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} m \frac{\partial v}{\partial t} &=& - \nabla (\delta \mu + \frac{1}{2} mv^2 \\ \delta \mu &=& v + U_0 n \frac{\hbar^2}{2m\sqrt{n}} \nabla ^2 \sqrt{n}-\mu_0 \,. \end{array}}

The Thomas-Fermi approximation is now applied, neglecting Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla f} , but keeping Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \phi} , giving

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \frac{\partial^2 \delta n}{\partial t^2} = U_0 \nabla (n_0 \nabla (\delta n)) \,, }

a wave equation for the density. For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_0} constant, is the speed of sound squared, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = \sqrt{U_0/m}} . The Thomas-Fermi solution for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_0} gives collective modes of the condensate. A droplet of condensate can have shape resonances, waves, and many other physical behaviors, captured by these solutions.