Difference between revisions of "Atomic Units"

From amowiki
Jump to navigation Jump to search
imported>Ketterle
imported>Woochang
Line 3: Line 3:
 
the three fundamental constants that appear in the hydrogen Hamiltonian, <math>\hbar=m=e=1</math>.  One thus arrives at atomic units, such as
 
the three fundamental constants that appear in the hydrogen Hamiltonian, <math>\hbar=m=e=1</math>.  One thus arrives at atomic units, such as
  
* length: Bohr radius = <math>a_0=\frac{\hbar^2}{me^2}=\frac{1}{\alpha}\frac{\hbar}{mc}=0.53 {\rm \AA}</math>
+
* length: Bohr radius = <math>a_0=\frac{\hbar^2}{me^2}=\frac{1}{\alpha}\frac{\hbar}{mc}=0.53\ \AA</math>
 
* energy: 1 hartree = <math>\frac{e^4 m}{\hbar^2}=(\frac{e^2}{c\hbar})^2mc^2=\alpha^2 mc^2=27.2\ \textrm{eV}</math>
 
* energy: 1 hartree = <math>\frac{e^4 m}{\hbar^2}=(\frac{e^2}{c\hbar})^2mc^2=\alpha^2 mc^2=27.2\ \textrm{eV}</math>
 
* velocity: <math>m v^2=\frac{e^{4}m}{\hbar^2}\Rightarrow v=\frac{e^2}{\hbar}=\alpha\cdot
 
* velocity: <math>m v^2=\frac{e^{4}m}{\hbar^2}\Rightarrow v=\frac{e^2}{\hbar}=\alpha\cdot

Revision as of 15:23, 14 October 2015

Atomic Units

The natural units for describing atomic systems are obtained by setting to unity the three fundamental constants that appear in the hydrogen Hamiltonian, . One thus arrives at atomic units, such as

  • length: Bohr radius =
  • energy: 1 hartree =
  • velocity:
  • electric field:
Note: This is the characteristic value for the orbit of hydrogen.

As we see above, we can express atomic units in terms of instead of by introducing a single dimensionless constant

The fine structure constant obtained its name from the appearance of in the ratio of fine structure splitting to the Rydberg; it is the only fundamental constant in atomic physics. As such, it should ultimately be predicted by a complete theory of physics. Whereas precision measurements of other constants are made in atomic physics for purely metrological purposes (see Appendix \ref{app:metrology) ), , as a dimensionless constant, is not defined by metrology. Rather, characterizes the strength of the electromagnetic interaction, as the following example will illustrate. If energy uncertainties become become as large as , the concept of a particle breaks down. This upper bound on the energy uncertainty gives us, via the Heisenberg Uncertainty Principle, a lower bound on the length scale within which an electron can be localized (before e.g. spontaneous pair production may occur) Even at this short distance of , the Coulumb interaction---while stronger than that in hydrogen at distance --- is only:

i.e. in relativistic units the strength of this "stronger" Coulomb interaction is . The fact that implies that the Coulomb interaction is weak.