Difference between revisions of "Math Test"
imported>Ichuang |
imported>Ichuang |
||
Line 3: | Line 3: | ||
<math>t \ll \frac{1}{{\Gamma''}}</math> | <math>t \ll \frac{1}{{\Gamma''}}</math> | ||
− | <math>t \ll \frac{1}{\Gamma}, \frac{1}{\Gamma'}</math><math>t\ll \frac{1}{{\Gamma"}} | + | <math>t \ll \frac{1}{\Gamma}, \frac{1}{\Gamma'}</math> |
+ | <math>t\ll \frac{1}{{\Gamma"}}</math> | ||
<math>t \ll \frac{1}{\Gamma}, \frac{1}{\Gamma'}, \frac{1}{\Gamma"},\ldots</math> | <math>t \ll \frac{1}{\Gamma}, \frac{1}{\Gamma'}, \frac{1}{\Gamma"},\ldots</math> |
Revision as of 14:17, 5 February 2009
much less than? Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \ll \frac{1}{{\Gamma''}}}
Failed to parse (syntax error): {\displaystyle t\ll \frac{1}{{\Gamma"}}}
Failed to parse (syntax error): {\displaystyle t \ll \frac{1}{\Gamma}, \frac{1}{\Gamma'}, \frac{1}{\Gamma"},\ldots}
This is a test
units: Failed to parse (unknown function "\unit"): {\displaystyle \frac{1}{\unit{1}{\kelvin}} } Failed to parse (unknown function "\unit"): {\displaystyle \unit{10}{\reciprocal\metre}}
mathbold: Failed to parse (unknown function "\bm"): {\displaystyle \bm{V}}
bold
italic Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \it test}
cal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cal{C} }
left right Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \frac{x}{y} \right]} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left| \Psi \right\rangle}
align*
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dt} \hat{\mu}_x &= - \frac{i \gamma^2}{\hbar} B_0 i \hbar \hat{L}_y = \gamma^2 \hat{L}_y B_0 = \hat{\mu}_y \gamma B_0 \\ \frac{d}{dt} \hat{\mu}_y &= - \mu_x \gamma B_0 \\ \frac{d}{dt} \hat{\mu}_z &= 0 \end{align} }
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left\langle \hat O\right\rangle &= Tr \left(\hat O\hat\rho\right) =\Sigma_n \left\langle n\right| \hat O\hat \rho \left|n\right\rangle \end{align}}