Difference between revisions of "Math Test"
Jump to navigation
Jump to search
imported>Ichuang |
imported>Ichuang |
||
Line 42: | Line 42: | ||
&= Tr \left(\hat O\hat\rho\right) | &= Tr \left(\hat O\hat\rho\right) | ||
=\Sigma_n \left\langle n\right| \hat O\hat \rho \left|n\right\rangle | =\Sigma_n \left\langle n\right| \hat O\hat \rho \left|n\right\rangle | ||
+ | \end{align}</math> | ||
+ | |||
+ | :<math>\begin{align} | ||
=\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle \left\langle n^\prime\right| \hat \rho \left|n\right\rangle \\ | =\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle \left\langle n^\prime\right| \hat \rho \left|n\right\rangle \\ | ||
\left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n | \left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n | ||
O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle | O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle | ||
\end{align}</math> | \end{align}</math> |
Revision as of 04:43, 5 February 2009
This is a test
units: Failed to parse (unknown function "\unit"): {\displaystyle \frac{1}{\unit{1}{\kelvin}} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \unit{10}{\reciprocal\metre}}
mathbold: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bm{V}}
bold
italic
cal
left right
align*
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} =\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle \left\langle n^\prime\right| \hat \rho \left|n\right\rangle \\ \left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle \end{align}}