Difference between revisions of "Math Test"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Ichuang
Line 42: Line 42:
 
&=  Tr \left(\hat O\hat\rho\right)
 
&=  Tr \left(\hat O\hat\rho\right)
 
=\Sigma_n \left\langle n\right| \hat O\hat \rho \left|n\right\rangle  
 
=\Sigma_n \left\langle n\right| \hat O\hat \rho \left|n\right\rangle  
 +
\end{align}</math>
 +
 +
:<math>\begin{align}
 
=\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle  \left\langle n^\prime\right| \hat \rho \left|n\right\rangle  \\
 
=\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle  \left\langle n^\prime\right| \hat \rho \left|n\right\rangle  \\
 
  \left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n
 
  \left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n
 
  O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle  
 
  O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle  
 
\end{align}</math>
 
\end{align}</math>

Revision as of 04:43, 5 February 2009

This is a test

units: Failed to parse (unknown function "\unit"): {\displaystyle \frac{1}{\unit{1}{\kelvin}} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \unit{10}{\reciprocal\metre}}

mathbold: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bm{V}}

bold

italic

cal

left right

align*

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} =\Sigma_{n^\prime n} \left\langle n\right| \hat O \left|n^\prime\right\rangle \left\langle n^\prime\right| \hat \rho \left|n\right\rangle \\ \left\langle \hat O\right\rangle} &= \Sigma_{nn^\prime}O_{nn^\prime}\rho_{n^\prime n O_{nn^\prime}= \left\langle n\right| \hat O \left|n^\prime\right\rangle \end{align}}