Difference between revisions of "Interferometer Heisenberg limit"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Ichuang
Line 7: Line 7:
 
operating point <math>\phi=\pi/2</math>,
 
operating point <math>\phi=\pi/2</math>,
 
:<math>  
 
:<math>  
\frac{|\Delta m|}{\Delta \phi} = n\sin\phi \leq n
+
\left| \frac{\Delta M}{\Delta \phi}\right| = n\sin\phi \leq n
 
\,.
 
\,.
 
</math>
 
</math>
Thus, if the smallest photon number change resolvable is <math>\Delta m=1</math>,
+
Thus, if the smallest photon number change resolvable is <math>\Delta M=1</math>,
 
then <math>n\Delta\phi \geq 1</math>, from which it follows that
 
then <math>n\Delta\phi \geq 1</math>, from which it follows that
 
:<math>  
 
:<math>  

Revision as of 03:54, 23 February 2009

The shot noise limit is not fundamental. Here is a simple argument that something better should be possible. Recall that the desired signal at the output of our Mach-Zehnder interferometer is , and the noise is . If the inputs have and , and if were zero, then the measured signal would be . And at the balanced operating point ,

Thus, if the smallest photon number change resolvable is , then , from which it follows that

This is known as the "Heisenberg limit" on interferometry. There are some general proofs in the literature that such a limit is the best possible on interferometry. It governs more than just measurements of phase shifters; gyroscopes, mass measurements, and displacement measurements all use interferometers, and obey a Heisenberg limit.

Heisenberg limited interferometry with entangled states

The argument above only outlines a sketch for why might be an achievable limt, versus ; it assumes that the noise can be made zero, however, and does not provide a means for accomplishing this in practice. Many ways to reach the Heisenberg limit in interferometry are now known. Given the basic structure of a Mach-Zehnder interferometer,

Chapter2-quantum-light-part-5-interferometry-l7-generic-mzi.png

one can consider changing the input state , changing the beamsplitters, or changing the measurement.

Common to all of these approaches is the use of entangled states. How entanglement makes Heisenber-limited interferometry possible can be demonstrated by the following setup. Let us replace the beamsplitters in the Mach-Zehnder interferometer with entangling and dis-entangling devices:

Chapter2-quantum-light-part-5-interferometry-l7-entangled-mzi.png

Conceptually, the unusual beamsplitters may be the nonlinear Mach-Zehnder interferometers we discussed in Section~2.3. They may also be described by simple quantum circuits, using the Hadamard and controlled-{\sc not} gate; for two qubits, the circuit is

Chapter2-quantum-light-part-5-interferometry-l7-entangler1.png

Note how the output is one of the Bell states. For three qubits, the circuit is

Chapter2-quantum-light-part-5-interferometry-l7-entangler2.png

This output state, (suppressing normalization) is known as a GHZ (Greenberger-Horne-Zeilinger) state. Straightforward generalization leads to larger "Schrodinger cat" states , using one Hadamard gate and controlled-{\sc not} gates. Note that the reversed circuit unentangles the cat states to produce computational basis states.

The important feature of such -qubit cat states, for our purpose, is how they are transformed by phase shifters. A single qubit becomes . Similarly, two entangled qubits in the state , when sent through two phase shifters, becomes , since the phases add. And qubits in the state sent through phase shifters becomes .

When such a phase shifted state is un-entangled, using the reverse of the entangling circuit, the controlled-{\sc not} gates leave the state , where the last qubits are left in , and the first qubit (the qubit used as the control for the {\sc cnot} gates) is

Compare this state with that obtained from the single qubit interferometer, Eq.(\ref{eq:l7-1qubitphase}); instead of a phase , the qubit now carries the phase . This means that the probability of measuring a single photon at the output becomes

The standard deviation, from repeating this experiment, on average, would be

Using , we obtain for the uncertainty in ,

which meets the Heisenberg limit.