Difference between revisions of "Tmp Lecture 24"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
(New page: <framebox> <attributes> <width>None</width> <pos>None</pos> </attributes> Lecture XXIV </framebox> <br style="clear: both" /> == EIT: Eigenstates picture == Using the field quantization...)
 
imported>Ichuang
Line 16: Line 16:
 
So the Hamiltonian is given by <math>\stackrel{\frac{\omega _1}{2}=g_ z\sqrt {n}}{\frac{\omega _2}{2}=g_ z\sqrt {m}}</math>  
 
So the Hamiltonian is given by <math>\stackrel{\frac{\omega _1}{2}=g_ z\sqrt {n}}{\frac{\omega _2}{2}=g_ z\sqrt {m}}</math>  
  
<displaymath>
+
:<math>\begin{align} H = \hbar \left( \begin{array}{ccc} 0 & g_1\sqrt {n} & 0 \\ g_1\sqrt {n} & \Delta & g_2\sqrt {m} \\ 0 & g_2\sqrt {m} & -\delta \end{array} \right) \end{align}</math>
  H = ℏ<left>
 
<attributes>
 
<delim>(</delim>
 
</attributes>
 
 
 
</left> <array>
 
<attributes>
 
<colspec>[c, c, c]</colspec>
 
<pos>None</pos>
 
</attributes>
 
<ArrayRow>
 
<ArrayCell>
 
0  
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  g<active::_>
 
<attributes>
 
</attributes>
 
1
 
</active::_><sqrt>
 
 
 
</sqrt>n  
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  0  
 
 
 
 
 
</ArrayCell>
 
</ArrayRow><ArrayRow>
 
<ArrayCell>
 
g<active::_>
 
<attributes>
 
</attributes>
 
1
 
</active::_><sqrt>
 
 
 
</sqrt>n  
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  <Delta>
 
 
 
</Delta>
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  g<active::_>
 
<attributes>
 
</attributes>
 
2
 
</active::_><sqrt>
 
 
 
</sqrt>m  
 
 
 
 
 
</ArrayCell>
 
</ArrayRow><ArrayRow>
 
<ArrayCell>
 
0  
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  g<active::_>
 
<attributes>
 
</attributes>
 
2
 
</active::_><sqrt>
 
 
 
</sqrt>m  
 
 
 
 
 
</ArrayCell><ArrayCell>
 
  -δ
 
 
 
 
 
</ArrayCell>
 
</ArrayRow>
 
</array> <right>
 
<attributes>
 
<delim>)</delim>
 
</attributes>
 
 
 
</right>
 
</displaymath>
 
  
 
On resonance <math>\Delta =\delta =0_1</math> the Eigenstates are  
 
On resonance <math>\Delta =\delta =0_1</math> the Eigenstates are  
Line 194: Line 108:
  
 
(note - I'm not sure how to get these in the same equation)  
 
(note - I'm not sure how to get these in the same equation)  
 +
 +
:<math>\begin{align}  i\left( \begin{array}{c} C_ g \\ C_ e \\ C_ f \end{array} \right)\end{align}</math>
  
 
<displaymath>
 
<displaymath>
i<left>
 
<attributes>
 
<delim>(</delim>
 
</attributes>
 
  
</left> <array>
 
<attributes>
 
<colspec>[c]</colspec>
 
<pos>None</pos>
 
</attributes>
 
<ArrayRow>
 
<ArrayCell>
 
C<active::_>
 
<attributes>
 
</attributes>
 
g
 
</active::_>
 
 
 
</ArrayCell>
 
</ArrayRow><ArrayRow>
 
<ArrayCell>
 
C<active::_>
 
<attributes>
 
</attributes>
 
e
 
</active::_>
 
 
 
</ArrayCell>
 
</ArrayRow><ArrayRow>
 
<ArrayCell>
 
C<active::_>
 
<attributes>
 
</attributes>
 
f
 
</active::_>
 
 
 
</ArrayCell>
 
</ArrayRow>
 
</array> <right>
 
<attributes>
 
<delim>)</delim>
 
</attributes>
 
 
</right>
 
 
</displaymath>
 
</displaymath>
  
Line 396: Line 266:
 
</attributes>
 
</attributes>
  
</right>
+
</right>  
 
</displaymath>
 
</displaymath>
 +
 +
:<math>\end{align}</math>
  
 
<math>\dot{C}_ g=-i\frac{\omega _1}{2}C_ e</math> <math>\dot{C}_ e=-i\frac{\omega _1}{2}C_ g -i\frac{\omega _2}{2}C_ f</math> <math>\dot{C}_ f=-i\frac{\omega _2}{2}C_ e</math>  
 
<math>\dot{C}_ g=-i\frac{\omega _1}{2}C_ e</math> <math>\dot{C}_ e=-i\frac{\omega _1}{2}C_ g -i\frac{\omega _2}{2}C_ f</math> <math>\dot{C}_ f=-i\frac{\omega _2}{2}C_ e</math>  

Revision as of 21:14, 22 February 2010

<framebox> <attributes> <width>None</width> <pos>None</pos> </attributes> Lecture XXIV </framebox>


EIT: Eigenstates picture

Using the field quantization to easily include energy conservation, we see that the states are coupled in triplets:

Image

So the Hamiltonian is given by

On resonance the Eigenstates are

Image

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C,"|g>+C_2"|e>+C_3"|f>=|BI>}

In the limit of weak probe and a strong pump,

Image

we can limit the analysis to . Then we can diagonalize the strong coupling, and treat the probe perturbatively

Image

becomes

|g,<underline> <attributes> </attributes> |,m> </underline>  ? |B|>  ? |B2>

Again we have a scattering problem

via a two photon process. The matrix element contains two intermediate states with opposite detunings.

On one- and two-photon resonance all couplings are symmetric in and , the detunings are opposite, and the matrix element M vanishes: electromagnetically induced transparency (EIT). If the pump remains on resonance and we tune the probe field, then the couplings are still symmetric in , , but the detunings are , and the matrix element does not vanish. Maximum scattering is obtained when we tune to one of the ??? states

Image

Image

When we include the decay within the system, we can no longer use the Hamiltonian formalism, but must use density matrices. Nevertheless, the eigenstates provide physical insight into the problem.


STIRAP in a three-level system

Image

If at least one of the two coupling beams is non-zero, there is always a finite energy spacing between the dark state and the bright states. This allows one, by changing the ration of the coupling beams, to adiabatically change the character of the dark state between |g> and |f> while not populating the bright states (and thus the excited state). By use of the so-called "counterintuitive pulse sequence"

Images

STIRAP of this type in a three-level system is also called "dark-state transfer."


Example: Five-level non-local STIRAP

Images

Atom A contains hyperfine excitation, can we transfer the hyperfine excitation from A to B without losing it from the cavity? Cavity strongly coupled to A,B with single-photon Rabi frequency g. Dark-state adiabatic transfer with virtual excitation of the cavity mode is possible:

Images

Procedure: turn on first coupling empty level, ramp up , ramp down adiabatic transfer via dark state of the cavity. Note that the probability to find the photon in the cavity can be made very small while maintaining full transfer: virtual states.

Images

If we stop the transfer suddenly half-way we create an entangled state where the single hyperfine excitation is shared between the two samples.

Verification and entanglement:

well-defined phase must exist

How to verify? Simultaneous readout, super and sub radiant states

Images

The dipole moments (emitted fields on the ge transition) of the two atoms can interfere.

Image

Interference fringe can only be observed if state is entangled. Fringe is due to interference if dipole moments between <underline> <attributes> </attributes> different </underline> atoms.


On the "magic" of dark-state adiabatic transfer

Image

How is it that we can transfer the population completely form state |g> to state |f> through the state |e> while keeping the unstable state |e> unpopulated? (The correct statement is "...while keeping the population of |e> negligibly small"). This is possible through coherence-interference: n resonance the eqs of motion for the amplitude read

(note - I'm not sure how to get these in the same equation)

<displaymath>

</displaymath>

=

<displaymath>

<left>

<attributes> <delim>(</delim> </attributes>

</left> <array> <attributes> <colspec>[c, c, c]</colspec> <pos>None</pos> </attributes> <ArrayRow> <ArrayCell>

0 


</ArrayCell><ArrayCell>

<frac>

<attributes> <numer>ω<active::_> <attributes> </attributes> 1 </active::_></numer> <denom>2</denom> </attributes>

</frac>


</ArrayCell><ArrayCell>

0 


</ArrayCell> </ArrayRow><ArrayRow> <ArrayCell> <frac> <attributes> <numer>ω<active::_> <attributes> </attributes> 1 </active::_></numer> <denom>2</denom> </attributes>

</frac>


</ArrayCell><ArrayCell>

0 


</ArrayCell><ArrayCell>

<frac>

<attributes> <numer>ω<active::_> <attributes> </attributes> 2 </active::_></numer> <denom>2</denom> </attributes>

</frac>


</ArrayCell> </ArrayRow><ArrayRow> <ArrayCell> 0


</ArrayCell><ArrayCell>

<frac>

<attributes> <numer>ω<active::_> <attributes> </attributes> 2 </active::_></numer> <denom>2</denom> </attributes>

</frac>


</ArrayCell><ArrayCell>

0 


</ArrayCell> </ArrayRow> </array> <right> <attributes> <delim>)</delim> </attributes>

</right> </displaymath>

<displaymath>

<left>

<attributes> <delim>(</delim> </attributes>

</left> <array> <attributes> <colspec>[c]</colspec> <pos>None</pos> </attributes> <ArrayRow> <ArrayCell>

C<active::_>

<attributes> </attributes> g </active::_>


</ArrayCell> </ArrayRow><ArrayRow> <ArrayCell> C<active::_> <attributes> </attributes> e </active::_>


</ArrayCell> </ArrayRow><ArrayRow> <ArrayCell> C<active::_> <attributes> </attributes> f </active::_>


</ArrayCell> </ArrayRow> </array> <right> <attributes> <delim>)</delim> </attributes>

</right> </displaymath>

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \end{align}}

Image

For adiabatic transfer we have and amplitude flow as

Image

So we see how |f> accumulates amplitude because it arrives there always with the same phase factor -1, whereas the flow back from |f> into |e> leads to a destructive interference in |e> with the amplitude flow from |g>, keeping the amplitude in |e> small at all times, while the amplitude on |f> keeps growing. If the state |f> were to acquire a random phase <underline> <attributes> </attributes> relative to |g> </underline> due to some other interaction, then the constructive interference leading to the accumulation of amplitude in |f> and the destructive interference in |e> would not work. The dark state transfer requires g-f coherence.