Difference between revisions of "Applications of the spontaneous light force"

From amowiki
Jump to navigation Jump to search
imported>Wikibot
m
imported>Ichuang
Line 419: Line 419:
 
accessible in the laboratory, and is one of the reasons why optical
 
accessible in the laboratory, and is one of the reasons why optical
 
molasses are so useful in practice.
 
molasses are so useful in practice.
 +
 +
== References ==
 +
 
* light-force-fig2.png [[Image:20090410-094308_light-force-fig2.png|thumb|100px|none|]]
 
* light-force-fig2.png [[Image:20090410-094308_light-force-fig2.png|thumb|100px|none|]]
 +
 +
[[Category:Light forces]]

Revision as of 13:44, 10 April 2009

Spontaneous emission leads to a redistribution of momentum of an atom, absorbed from incident photons. Here, we discuss three applications of this spontaneous light force:

  • Optical Molasses
  • Beam Slowing
  • Magneto-Optical Traps

The spontaneous light force

Consider a two-level atom with energy spacing , interacting with a single mode laser beam:

Chapter1-intro-to-cooling-Lec1-twolevel.png

Let the laser intensity be , and the interaction matrix element between atom and light be , where is known as the Rabi frequency, is the electric field strength, and is the dipole moment of the atom. It is useful to define a quantity known as the saturation intensity as the intensity of light at which the rabi frequency becomes , where is the spontaneous emission rate (the natural decay rate of the atom from to . This gives

The rate at which photons are scattered from the atom is known to be

where is the frequency detuning of the laser from the center of resonance of the atom. Two useful limits of this scattering rate are

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \lim_{I\rightarrow\infty} \gamma_s &=& \frac{\Gamma}{2} = \frac{1}{2\tau} \\ \lim_{I\rightarrow I_0} \gamma_s &=& \frac{\Gamma}{4} \,, \end{array}}

where we have assumed (resonant light). These expressions have a natural physical interpretation: in the limit of infinite intensity, the atomic levels become equally populated between the excited and ground state, and thus only half the atoms (the excited ones) can scatter light. Thus, the scattering rate is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma/2} in that limit. Suppose the force imparted by light on the atom is given by the recoil of photons spontaneously emitted from the atom. This force would then be

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = \hbar k \gamma_s \,, }

where is the momentum of each photon. This expression makes several assumptions: that is is the net momentum transfer in absorption, that there is no "stimulated" force, and that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar k/m k \ll \Gamma} , meaning that the jump in the Doppler shift is less than the natural linewidth. Typically, for alkali atoms, this force is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\leq 10^5 g} times the mass of an atom ( being the acceleration due to gravity). This means that light can stop a sodium atom going at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1000} m/s in one millisecond, or about half a meter. In comparison to electrostatic forces on ions, this is very small, however: it is comparable to the force exerted by an electric field of 1 millivolt/cm on an ionized sodium atom. Moving atoms experience a Doppler shift, which we can model as a frequency dependent force, based on Eq.(\ref{eq:ci:lorentzian}), as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = \hbar k \frac{\Gamma}{2} \frac{I/I_0}{1+\frac{I}{I_0} + 2\left[\frac{2(\delta+kv)}{\Gamma}\right]^2} \,, }

where is the velocity of the atom. The effect of a fixed laser frequency on an ensemble of atoms is to modify their Maxwell-Boltzmann thermal velocity distribution:

Chapter1-intro-to-cooling-l1fig2.png

Note how the initial distribution changes to one with atoms piling up below the velocity group resonant with the laser. The atoms bunch. Historically, this is the first method that was done to cool atoms to Kelvin temperatures.

One-dimensional optical molasses

Let us now turn to a method which allows cooling of atoms to zero velocity. Consider two laser beams incident on an atom from opposite directions. We assume that the total force is the sum of the two forces, ignore standing wave effects, and take the laser intensity to be low compared with the saturation intensity, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I\ll I_0} . Taking the force to be the sum of two forces described by Eq.(\ref{eq:ci:vdf}), we find that the two lorentzians sum to give the following force as a function of velocity:

Chapter1-intro-to-cooling-l1fig3.png

The velocity dependent force is positive from one light beam, and negative from the other. With a detuning chosen such that force is zero at zero velocity, the force around Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=0} can be expanded linearly, giving

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(v) = -\alpha v \,, }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} describes the viscosity imparted by the light force to the atom, reflecting the restoring force applied when the atom is not at zero velocity. This configuration is known as an {\em optical molasses}, because of this restoring force, which makes the light behave like a thick, viscous medium for the atoms in it. The damping coefficient can be calculated to be

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = 2\hbar k^2 \frac{(2I/I_0)(2\delta/\Gamma)}{\left(1+\left(\frac{2\delta}{\Gamma}\right)^2\right)^2} \,. }

The Doppler cooling limit

We have seen that the spontaneous light force, characterized by the Lorentzian response of an atom to light, together with the Doppler shift due to movement of the atom, gives a velocity dependent force, which can be zero at zero velocity. Does this mean that the atoms can be cooled to zero temperature? If the rate of energy loss due to cooling is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{E}_{\rm cool} = F v = -\alpha v^2 = -\frac{2\alpha}{M} E \,, }

then we should reach zero velocity, and zero temperature. Indeed, the kinetic energy decays exponentially. However, the spontaneous force has a random character, and thus has fluctuations which limit the minimum temperature achievable. This limit is determined by momentum diffusion. The force imparted can be described by a random walk. The final momentum is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_{\rm final}^{RMS} = \hbar k \sqrt{N} \,, }

on average, due to the random walk. Note that the momentum spread is

This describes heating which arises due to photons randomly scattering in all directions, such that the net momentum almost adds up to zero, but not quite. There is also a similar term due to absorption: some atoms will absorb more or less photons, due to the Poissonian statistics of absorption. Thus, the time variation of the kinetic energy due to the fluctuating forces is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{E}_{\rm heat} = \frac{2\hbar^2 k^2\gamma_s}{2M} = \frac{D}{M} \,, }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} is the momentum diffusion coefficient

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = \frac{ \langle p^2{\rangle}}{2} \,, }

which we'll later see is a correlation function of the fluctuation forces. Let us now derive the Doppler limit for cooling. In equilibrium, . This means

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{D}{M} = \frac{2\alpha}{M}E \,. }

The heating rate is independent of kinetic energy, whereas the cooling rate is a function of kinetic energy. So as the atoms cool down, the cooling rate slows down, resulting in a final temperature equilibrium being reached:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2E_{final} = kT_{\rm doppler} = \frac{D}{\alpha} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is a viscosity parameter: it reflects transport. reflects mobility. Thus, this is an Einstein relation, a universal expression in statistical mechanics resulting from the fundamental theorem which relates dissipation to fluctuations. We've now obtained an expression for the Doppler limit temperature, a limit on the temperature an ideal two-level atom can be cooled to by laser beams,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k T_{\rm doppler} = \frac{\hbar\Gamma}{2} \,. }

This optimal temperature is achieved for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I\ll I_0} , and detuning of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta = -\Gamma/2} (half a linewidth). Physically, at low temperatures, the atom cannot determine whether the photon comes from left or right; at higher temperatures, the atom can discriminate whether photons come from left or right, thus cooling. For sodium, this temperature is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} K, corresponding to a velocity of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 30} cm/s.

Beam slowing

Let us now go back to slowing and atomic beams, in which we have many atoms and only one laser beam. If we have a Maxwell-Boltzmann distribution with atoms moving counterpropagating to the laser, the atoms' velocity distribution is pushed to lower velocities:

Chapter1-intro-to-cooling-Lec1-beam-slowing.png

Note that in the Doppler cooling picture, we can only talk to atoms which are already pretty slow. From an atomic beam, however, there are hardly any atoms within this capture velocity range. It would be much nicer to collect atoms from the whole MB distribution; this is called beam slowing. Two stages are typically used: beam slowing, then Doppler cooling. We studied Doppler cooling first, because it was useful to get the concepts of the friction force and momentum diffusion. Beam slowing uses only one laser beam, but involves an extra twist in that we must first transform into a decelerating frame. Conceptually, the idea is to change the frequency of light applied as the atoms slow down, so that atoms continually experience a negative force. One way to accomplish this is to use multiple laser frequencies (white light slowing). Another is "diffuse light slowing" which uses light covering a large spectrum. Most efficient is to use a single frequency, and change the detuning of atoms with a magnetic field (re homework). We'll discuss "chirped slowing," because of its conceptual simplicity. It has little experimental use today, but was important in the mid 90's.

Chirped slowing

The force on an atom in the beam due to the light is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = -\hbar k \frac{\Gamma}{2} \frac{I/I_0}{1+I/I_0 + \left[ \frac{2(\delta+k v)}{\Gamma} \right]^2} }

Let us assume a frame of reference and experimental setup such that , , , . We can call , where is the atom's mass. The scheme begins by selecting the deceleration desired, some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<0} . Then set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = -Ma} , and look for a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta' = \delta + kv} to obtain this desired force. This will exist if

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a| < \frac{I/I_0}{1+I/I_0} a_max \,. }

Next, select an initial velocity such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t) = v_0 + a t} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta'} is the detuning for this "targeted" velocity group, so we must provide a laser with frequency in the lab frame of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(t) = \delta' - k v(t)} . The atom's velocity will differ from the desired target group by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v' = v-v(t)} . With these definitions, we now have

in the frame of reference of the atoms in the target velocity group. Transforming into this decelerating frame, we get a fictitious force with is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{fict} = -Ma} , and

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(v') = M a_{max} \left[ \frac{I/I_0}{1+I/I_0 + \left[ \frac{2(\delta'+k v')}{\Gamma} \right]^2 } + \frac{I/I_0}{1+I/I_0 + \left[ \frac{2(\delta')}{\Gamma} \right]^2 } \right] }

This second term has the same structure as the first, but it is velocity independent. All we've done is to substitute definitions, so far, but they provide useful intuition. In the lab frame, we have a force which is a positive Lorentzian. In the decelerating frame, we had to add Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -Ma} , so this Lorentzian shifts down:

Chapter1-intro-to-cooling-Lec1-beam-slowing-lock.png

Therefore, there is now a stable "lock" point, where as a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v'} . Thus, we may write, as we did with the molasses, an expression for the linearized force around this point, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(v') = -\alpha v'} , in which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_{beam} = \alpha_{molasses}/2} . We may also calculate a momentum diffusion coefficient, and we'd find that , so that the final temperature limit of the beam is actually the same as that achievable with a molasses: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kT_{beam} = kT_{molasses}} . We've seen that one laser can bunch up atoms from a beam at a single velocity. Physically, what happens is that if the atoms fall behind, the light does not interact with them, but if the atoms are too fast, the laser cools them, much like in the molasses case. Here is a graphical summary of what we've learned about beam slowing. In the decelerating frame, this is the situation. Change sign, so that in the frame the decelerating force is positive, for this graph:

Chapter1-intro-to-cooling-Lec1-bs-velocity.png

Initially, our zero force point is at the targeted velocity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} . All atoms at larger velocity experience a constant positive force, accelerating them. After a certain time Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , the tail of the maxwell-Boltzmann distribution is pushed to higher velocities:

Chapter1-intro-to-cooling-Lec1-bs-lab-frame.png

similarly, all the atoms at lower velocities are pushed up in velocity until they stack up at , producing a narrow distribution around Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} . The width of this narrow velocity distribution is proportional to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{kT_{beam}}/M} . Beam cooling is actually the simplest and cleanest example of laser cooling, because in the two-beam molasses case, one should really consider interference effects.

Energy versus momentum picture

Energy

Where did the energy go, in cooling the atoms? The energy was radiated away by spontaneous emission, as we shall now see. Light emitted by the atom is at the resonant energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_0} , but can be absorbed when the photon is just slightly less than . The emission is isotropic, whereas the incident light is directed and Doppler shift dependent.

Chapter1-intro-to-cooling-Lec1-energy.png

Doppler cooling can be explained in this picture. Laser light is detuned below Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_0} ("red detuned"). The same intuition can be applied to solids and liquids. Phonon assisted absorption is balanced against emission, resulting in cooling:

Chapter1-intro-to-cooling-Lec1-cooling-solid.png

How hard is it to cool liquids and solids? Consider a system at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=1} K; that gives the phonon energy. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\omega = 25,000} Kelvin. In practice, there is a lower than unity fluorescence quantum yield, because there are non-radiative ways to exit the excited state. The cooling will be efficient, however, only when the quantum yield is higher than , which is typically unrealistic. Cooling with laser light is therefore not typically practical, for systems other than atoms, which have a unity fluorescence quantum yield. Molecules are hard, because they have non-radiative de-excitation pathways.

3D molasses, high intensities

To cool atoms along not just one axis, but along three axes, use six counter-propagating laser beams. This configuration is called a 3D molasses. Everything we've discussed in one dimension can be applied; just sum up the forces. Some care must be taken, however, if interference patterns are created between the beams. As long as the atoms move a distance greater than the wavelength, interference may be neglected. But large field gradients can add extra forces and heating. One can also alternate between the six beams, but having simultaneous beams actually turns out to be good; it gives polarization gradients and other subtle effects which provide extra cooling. Landmark: in 1985, Steve Chu used chirped slowing and a 3D molasses configuration to obtain atoms colder than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} mK, for the first time.

Cooling at high intensities

Keep in mind that laser cooling works because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F=-\alpha v} and . Assume we have a detuning of about one linewith, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=-\Gamma} . Now plot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} as a function of intensity:

Chapter1-intro-to-cooling-Lec1-high-inten.png

First, increases as a function of intensity. Don't be confused by the fact that the Doppler limit is achieved at low intensities. The diffusion coefficient is also linear in intensity at low intensity. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} increases with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I/I_0} at first, and peaks around , but above the saturation limit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} actually changes sign and starts heating. When Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha<0} then, counter-intuitively, blue detuned light can be used to cool atoms. This is a non-trivial result, which we'll return to later, and understand in the context of the optical Bloch equation and the dressed atom model.

Momentum and spatial diffusion

Momentum diffusion

First, consider diffusion of the momentum of an atom being cooled. The momentum diffusion coefficient is defined as

This can be directly calculated if we have a fluctuating force, using the fact that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\vec{p}/dt = \vec{f}} is a force:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} 2D^p &=& \frac{d}{dt} \left[ {\langle}\vec{p}\cdot\vec{p}{\rangle}-{\langle}\vec{p}{\rangle}{\langle}\vec{p} \rangle \right] \\ &=& 2 \left[ {\langle}\vec{p}\cdot\vec{f}{\rangle}-{\langle}\vec{p}{\rangle}{\langle}\vec{f} \rangle \right] \\ &=& 2 \int^0_{-\infty} {\langle}\vec{f}(0) \cdot \vec{f}(t) \rangle - \langle \vec{f}(0) {\rangle}{\langle} \vec{f}(t) \rangle \, dt \,, \end{array}}

showing that the diffusion is given by the integral of the force-force correlation function. Essentially:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} 2D^p &=& 2 \int^0_{-\infty} \langle \vec{f}(t) \cdot \vec{f}(0) \rangle \, dt \,. \end{array}}

This results due to the fluctuation-dissipation theorem.

Spatial diffusion

This is less frequently discussed in the literature compared with momentum diffusion, but it is of practical importance in experiments. Suppose the atoms start in a single point, embedded in a 3D optical molasses. How does the point distribution expand? On the time scale determined by , the atoms loose their memory of their original velocities. The molasses has a nearly perfect thermal distribution, despite atoms in the cloud never interacting with each other, because they thermalize to the laser beam. The damping time is

Spatial diffusion can be described by a random walk (in space), with a step size given by the RMS velocity of the atoms and the damping time,

where the extra factor of comes from a more rigorous treatment. Thus, starting from a point distribution, by the standard random walk result, after time Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_d} , we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r^2 \rangle = 2 \ell^2 t_d \gamma \,, }

where the number of steps is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_d\gamma} . This is

Now recall the definition

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r^2 \rangle = 2 D^x t_d \,, }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D^x} is the spatial diffusion coefficient. This gives a relation between the spatial and momentum diffusion coefficients,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D^x = \frac{D^p}{\alpha^2} = \frac{KT}{\alpha} \,. }

Note the similarity of this expression with the Einstein relation for carriers in semiconductors, . These expressions are useful in the laboratory context, as an example illustrates. How long does a typical trapped alkali atom (eg cesium or sodium) take to diffuse out by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.5} cm at the Doppler temperature? Using the formulas above, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_d = 1} second. This is very accessible in the laboratory, and is one of the reasons why optical molasses are so useful in practice.

References

  • light-force-fig2.png
    20090410-094308 light-force-fig2.png