Difference between revisions of "Techniques for cooling to ultralow temperatures"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Zakven
(→‎Magnetic traps: Added text describing the)
Line 210: Line 210:
 
::[[Image:Techniques_for_cooling_to_ultralow_temperatures-ultra10.png|thumb|400px|none|]]
 
::[[Image:Techniques_for_cooling_to_ultralow_temperatures-ultra10.png|thumb|400px|none|]]
  
This is a photograph of coils typically used:
+
In practice the simple arrangement of wires described above is somewhat inconvenient for experiments because running the Ioffe bars through the vacuum chamber is a technical challenge.  However the same magnetic trap (to leading order around the trap center) can be generated by wires arranged in a cloverleaf trap as depicted in the following photo.
  
 
::[[Image:Techniques_for_cooling_to_ultralow_temperatures-ultra11.png|thumb|400px|none|]]
 
::[[Image:Techniques_for_cooling_to_ultralow_temperatures-ultra11.png|thumb|400px|none|]]
 +
 +
The two pinch coils are visible on the left and the right depicts the four Ioffe bars which have been bent and wrapped into a circle.
  
 
== Evaporative cooling ==
 
== Evaporative cooling ==

Revision as of 19:44, 16 April 2017

Magnetic cooling

The principle of magnetic trapping is deflection by magnetic fields. This is at the heart of the Stern-Gerlach experiment in 1925. In the 1960's it was realized that magnetic confinement could be realized. It was first realized for neutrons, in 1978 by Paul. The exciting 1980's was magnetic cooling and trapping, including work by Phillips, Pritchard, and Greytak, on sodium and other atoms.

Earnshaw theorem

Recall the Earnshaw theorem, previously discussed for the optical force, and for trapped ions. This states that trapping requires or . For a rigid charge distribution, with positions , where is the center of mass motion and is the relative position of charge , we find that

must satisfy . An arbitrary rigid charge distribution (with arbitrary multiple moments) cannot be kept in stable equilibrium at rest in free space in static electric fields. The same theorem applies for magnetic multipole distributions.

Circumventing the Earnshaw theorem

Sir James-Jeans, in 1925, pointed out a way around this limit. If the matter is polarizable, this can change the electric fields.

Techniques for cooling to ultralow temperatures-ultra1.png

The displacement of the trapped particle or of the field generated by a particle which are energetically favorable are forbidden due to constraints. This leads to a loophole, as exemplified by magnet stabilized above a superconductor:

Techniques for cooling to ultralow temperatures-ultra2.png

The constraint that no magnetic field may enter a superconductor causes shielding currents to be created which stabilize the trapping configuration for the levitated particle. This happens in a configuration which is not a minimum of the magnetic energies.

Of course, electronic feedback can be used to create a stable trapping potential, providing time varying fields.

Another example is provided by diamagnetic matter. Such matter expels an external field.

Yet another, important, example is if is constant. This constrains angular momentum; the dipole moment is not allowed to flip over to move into what might be a more energetically favorable configuration.

Trapping a magnetic moment

Now let us see how these ideas can allow trapping of an object with a magnetic moment. Let us consider when a magnetic moment might be constrained such that the potential depends only on the absolute value of the magnetic field, .

Wing's theorem

Wing's theorem (1983) says that in a region devoid of charges and currents, quasistatic electric of magnetic fields can have local minima, but not local maxima. The proof of this fact is by non-existence of a maximum by contradiction. Assume is a max. Then

It follows that

and the cross-term must be always negative. Without loss of generality, this requires, for example, . However, that presents a contradiction with the Laplace equation (recall Earnshaw's theorem). A minimum, on the other hand, is possible because of the term. There can thus be local minima, but not local maxima, in an electric field configuration.

By Wing's theorem, since there can only be local minima (and not maxima) in a static magnetic field, to have a stable magnetic trap, must be antiparallel to . The limits to stability of magnetic traps include spin relaxation (involving nuclear magnetic moment changes), dipolar relaxation (involving angular momenta changes of atomic motion), and Majorana flops.

Classical magnetic moment in a trap

More specifically, to trap, must be antiparallel to only adiabatically, as follows. Consider the problem of trapping a classical magnetic moment. Such a magnetic moment precesses in a magnetic field:

Techniques for cooling to ultralow temperatures-ultra3.png

What is needed is for the precession of the magnetic moment to follow and maintain the same angle with respect to the field, as the moment moves in an inhomogeneous field. If the field changes slowly, the precession will follow the field, but if the field changes too rapidly, the spin may no longer be antiparallel with respect to the field:

In the spherical quadrupole magnetic trap, made by anti-Helmholz coils, spins can flip in the following way, known as Majorana flops. As an atom moves through the field configuration:

Techniques for cooling to ultralow temperatures-ultra4.png

it should flip its moment as it moves through the center of the field; however, there is a zero in the field at the center, at which point the spin can easily find itself aligned parallel with the field upon the atom's exit. This causes atoms to leak from the trap.

Levitron example

Counter-intuitively, spinning the top faster does not lead to a more stable trap. Rather, it causes increased instability; this is due to a process we may think of as being a classical analog of Majorana flops.

The levitron works in the following way. At ,

etc. The magnetic field above the center of the spinning magnet is thus

Techniques for cooling to ultralow temperatures-ultra5.png

The second derviative of the magnetic field must give positive curvature along both the radial and axial directions, for the trap to be stable. This plot shows there is only a very small stability range for the trap.

Recall our trapping criterion: must stay anti-parallel to . This happens due to precession, as long as . The precession frequency of a gyroscope is given by the torque, so

where is the moment of inertia. is thus violated for large or . Around , one gets spin flips, referred to as Majorana flops in magnetic trapping of atoms.

Magnetic traps

In magnetic traps, . can only have local minima, and not maxima, so we must ensure the angle of the field is such that the prefactors are positive. For Rubidium, we have these energy level dependencies on the field:

Techniques for cooling to ultralow temperatures-ultra6.png

The only states which are trapped are thus which have positive energy versus magnetic field slope.

The spherical quadrupole trap has a linear field dependency versus position going through the center:

Techniques for cooling to ultralow temperatures-ultra7.png

A plug is thus needed to close the hole at . Two strategies are (1) to use a repulsive dipole force, or (2) use a rapidly rotating magnetic field -- the TOP trap:

Techniques for cooling to ultralow temperatures-ultra8.png

The TOP trap adds a linear bias field to displace the origin of the trap, such that the time-average potential produces no zero in the magnetic field. The Ioffe-Pritchard trap does this, with a constant field and a curvature created by four "Ioffe" bars, adding to the two "Pinch" coils:

Techniques for cooling to ultralow temperatures-ultra9.png

The Ioffe bars create the quadrature field,

and the pinch field creates a linear field,

where the last term on the right is recognized to be . This configuration can be used with :

Techniques for cooling to ultralow temperatures-ultra10.png

In practice the simple arrangement of wires described above is somewhat inconvenient for experiments because running the Ioffe bars through the vacuum chamber is a technical challenge. However the same magnetic trap (to leading order around the trap center) can be generated by wires arranged in a cloverleaf trap as depicted in the following photo.

Techniques for cooling to ultralow temperatures-ultra11.png

The two pinch coils are visible on the left and the right depicts the four Ioffe bars which have been bent and wrapped into a circle.

Evaporative cooling

Techniques for cooling to ultralow temperatures-ecool1.png
Techniques for cooling to ultralow temperatures-ecool2.png
Techniques for cooling to ultralow temperatures-ecool3.png
Techniques for cooling to ultralow temperatures-ecool4.png
Techniques for cooling to ultralow temperatures-ecool5.png
Techniques for cooling to ultralow temperatures-ecool6.png
Techniques for cooling to ultralow temperatures-ecool7.png
Techniques for cooling to ultralow temperatures-ecool8.png
Techniques for cooling to ultralow temperatures-ecool9.png
Techniques for cooling to ultralow temperatures-ecool10.png
Techniques for cooling to ultralow temperatures-ecool11.png
Techniques for cooling to ultralow temperatures-ecool12.png
Techniques for cooling to ultralow temperatures-ecool13.png
Techniques for cooling to ultralow temperatures-ecool14.png
Techniques for cooling to ultralow temperatures-ecool15.png

References