Difference between revisions of "Math Test"
Jump to navigation
Jump to search
imported>Ichuang |
imported>Ichuang |
||
Line 37: | Line 37: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
+ | |||
+ | so that | ||
+ | :<math>\begin{align} | ||
+ | \cos \alpha | ||
+ | &= 1 - \frac{4 \mu^2 \sin^2 \theta \sin^2 \frac{\Omega_R t}{2}}{2 \mu^2} | ||
+ | \mu_z(t) | ||
+ | &= \mu \left( 1 - 2 \frac{\omega_R^2}{\delta^2 + \omega_R^2} \sin^2 | ||
+ | \mu_z(t) | ||
+ | &= \mu \left( 1 - 2 \frac{\omega_R^2}{\Omega_R^2} \sin^2 \frac{\Omega_R t}{2} | ||
+ | \right) | ||
+ | \end{align}</math> |
Revision as of 04:31, 5 February 2009
This is a test
units: Failed to parse (unknown function "\unit"): {\displaystyle \frac{1}{\unit{1}{\kelvin}} } Failed to parse (unknown function "\unit"): {\displaystyle \unit{10}{\reciprocal\metre}}
mathbold: Failed to parse (unknown function "\bm"): {\displaystyle \bm{V}}
bold
italic
cal
left right
align*
so that
- Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \cos \alpha &= 1 - \frac{4 \mu^2 \sin^2 \theta \sin^2 \frac{\Omega_R t}{2}}{2 \mu^2} \mu_z(t) &= \mu \left( 1 - 2 \frac{\omega_R^2}{\delta^2 + \omega_R^2} \sin^2 \mu_z(t) &= \mu \left( 1 - 2 \frac{\omega_R^2}{\Omega_R^2} \sin^2 \frac{\Omega_R t}{2} \right) \end{align}}