Difference between revisions of "Light forces"

From amowiki
Jump to navigation Jump to search
imported>Ketterle
imported>Ketterle
Line 9: Line 9:
 
**          [https://cua-admin.mit.edu:8443/wiki/images/a/aa/2009-04-08-Applications_of_spontaneous_force.pdf  2009 Class notes]
 
**          [https://cua-admin.mit.edu:8443/wiki/images/a/aa/2009-04-08-Applications_of_spontaneous_force.pdf  2009 Class notes]
 
* [[Dipole forces and the dressed atom picture]]
 
* [[Dipole forces and the dressed atom picture]]
 +
**  see API Chapter VI – worth reading!
 +
**    [  Important paper: J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am .B 2, 1707 (1985)]
  
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
Line 14: Line 16:
 
== 2007 Handouts ==
 
== 2007 Handouts ==
 
* The dressed atom approach
 
* The dressed atom approach
**            Reading:  API Chapter VI – worth reading!
+
**             
 
 
** Lecture notes
 
** Important paper: J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am .B 2, 1707 (1985)
 
 
* Spontaneous light force traps
 
* Spontaneous light force traps
 
** Magneto-optical trap, Optical Earnshaw theorem
 
** Magneto-optical trap, Optical Earnshaw theorem

Revision as of 23:58, 8 April 2009

2007 Handouts

  • The dressed atom approach
  • Spontaneous light force traps
    • Magneto-optical trap, Optical Earnshaw theorem
    • Reading: pp. 316-335 of the paper which was already used in lecture 1
      • (Nice summary on both dipole traps and radiation pressure traps)
        • W.D. Phillips, Laser cooling and trapping of neutral atoms, in Laser Manipulation of Atoms and Ions, edited by E. Arimondo, W.D. Phillips, and F. Strumia, Proceedings of the International School of Physics “Enrico Fermi”, Course CXVIII (North-Holland, Amsterdam, 1992) Download
      • Original papers:
        • Optical Earnshaw theorem (OET): Ashkin and Gordon
        • How to circumvent the OET: Pritchard et al.
        • Realization of the MOT: Raab et al.