Difference between revisions of "Ideal Fermi Gas"

From amowiki
Jump to navigation Jump to search
imported>Junruli
imported>Junruli
Line 49: Line 49:
 
Limiting values: <math>{\rm Li}_n(z) \stackrel{z \ll 1}{\rightarrow} z</math> and <math>-{\rm Li}_n(-z) \stackrel{z\rightarrow\infty}{\rightarrow} \frac{1}{\Gamma(n+1)}\; \ln^n(z)</math>.}. Note that expression for <math>n</math> is correct for any potential <math>V(\vec{r})</math>. The constraint on the number of thermal particles is
 
Limiting values: <math>{\rm Li}_n(z) \stackrel{z \ll 1}{\rightarrow} z</math> and <math>-{\rm Li}_n(-z) \stackrel{z\rightarrow\infty}{\rightarrow} \frac{1}{\Gamma(n+1)}\; \ln^n(z)</math>.}. Note that expression for <math>n</math> is correct for any potential <math>V(\vec{r})</math>. The constraint on the number of thermal particles is
 
:<math>
 
:<math>
N_{th} = \Intr{r} \; n_{th}(\vec{r})
+
N_{th} = \Int \rm d\; r \; n_{th}(\vec{r})
 
\,.
 
\,.
 
</math>
 
</math>

Revision as of 17:30, 11 May 2017

We talk about basics for an ideal Fermi gas.

Fermi-Dirac distribution

The particles in an atom trap are isolated from the surroundings, thus the atom number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} and total energy content of the atomic cloud is fixed. However, it is convenient to consider the system to be in contact with a reservoir, with which it can exchange particles and energy (grand canonical ensemble). For non-interacting particles with single-particle energies Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_i} , the average occupation of state Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\epsilon_i, \mu, T) = \frac{1}{e^{(\epsilon_i - \mu)/k T} + 1} \,. }

These is the Fermi-Dirac distribution. For a fixed number of particles Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} one chooses the chemical potential such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \sum_i f(\epsilon_i, \mu, T)} .

Fermi Energy

We observe that at zero temperature, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is the energy of the highest occupied state ofthe non-interacting Fermi gas, also called the Fermi energy . The (globally) largest momentum is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_F \equiv \hbar k_F \equiv \sqrt{2 m E_F}} , the Fermi momentum. Locally, at position Failed to parse (unknown function "\vect"): {\displaystyle \vect{r}} in the trap, it is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_F(\vec{r}) \equiv \hbar k_F(\vec{r}) \equiv \sqrt{2 m \epsilon_F(\vec{r})} \equiv \hbar (6\pi^2 n_F(\vec{r}))^{1/3}} with the local Fermi energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_F(\vec{r})} which equals Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(\vec{r},T=0) = E_F - V(\vec{r})} . The value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_F} is fixed by the number of fermions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} , occupying the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} lowest energy states of the trap.

Trapped Fermi Gas

Harmonic Trap

Applying these distributions to particles confined in a harmonic trap, with trapping potential

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\vec{r}) = \frac{1}{2} m (\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) \,. }

We assume that the thermal energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k T \equiv 1/\beta} is much larger than the quantum mechanical level spacings Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\omega_{x,y,z}} (Thomas-Fermi approximation). In this case, the occupation of a phase space cell Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\vec{r},\vec{p}\right\}} (which is the phase-space density times $h^3$) is given by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\vec{r},\vec{p}) = \frac{1}{e^{(\frac{\vec{p}^2}{2m} + V(\vec{r}) - \mu)/k T} + 1} \,. }

The density distribution of the thermal gas is

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2\pi \hbar^2}{m k_B T}}} is the de Broglie wavelength. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li}_n(z)} is the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{th}} -order Polylogarithm, defined as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li}_n(z)\; \equiv\; \frac{1}{\pi^n} \int {\rm d}^{2n}r \frac{1}{e^{\vec{r}^2}/z - 1}\; \stackrel{n\ne 0}{=}\; \frac{1}{\Gamma(n)}\int_0^\infty {\rm d}q \frac{q^{n-1}}{e^q/z - 1} \,. }

where the first integral is over Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n} dimensions, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}} is the radius vector in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n} dimensions, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is any positive half-integer or zero and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(n)} is the Gamma-function. The Polylogarithm can be expressed as a sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li}_n(z) = \sum_{k=1}^\infty \frac{z^k}{k^n}} which is often used as the definition of the Polylogarithm. This expression is valid for all complex numbers Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |z|\le 1} . The definition given in the text is valid for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\le l} .

Special cases: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li}_0(z) = \frac{1}{1/z - 1}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li_1}(z) = -\ln(1-z)} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\vec{r},\vec{p})} can be written as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -{\rm Li}_0(- \exp[\beta(\mu-\frac{\vec{p}^2}{2m} - V(\vec{r}))])} . When integrating density distributions to obtain column densities, a useful formula is:

Limiting values: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Li}_n(z) \stackrel{z \ll 1}{\rightarrow} z} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -{\rm Li}_n(-z) \stackrel{z\rightarrow\infty}{\rightarrow} \frac{1}{\Gamma(n+1)}\; \ln^n(z)} .}. Note that expression for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is correct for any potential Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\vec{r})} . The constraint on the number of thermal particles is

Failed to parse (unknown function "\Int"): {\displaystyle N_{th} = \Int \rm d\; r \; n_{th}(\vec{r}) \,. }

For a harmonic potential, we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_{th} = - \left(\frac{k_B T}{\hbar \bar{\omega}}\right)^3 {\rm Li}_3(-\,e^{\beta\mu}) }

with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\omega} = (\omega_x \omega_y \omega_z)^{1/3}} the geometric mean of the trapping frequencies.

In the classical limit at high temperature, we recover the Maxwell-Boltzmann result of a gaussian distribution,

The regime of quantum degeneracy is reached when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{dB} \approx n ^{-1/3}} , or when the temperature Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T \approx T_{\rm deg}} . The degeneracy temperature Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\rm deg} = \frac{\hbar^2}{2m k_B} n^{2/3}} is around or below one Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu \rm K} for typical experimental conditions.

For {\bf bosons}, it is at this point that the ground state becomes macroscopically occupied and the condensate forms. For {\bf fermions}, the occupation of available phase space cells smoothly approaches unity without any sudden transition:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\vec{r},\vec{p}) = \frac{1}{e^{(\frac{\vec{p}^2}{2m} + V(\vec{r}) - \mu)/k_B T} + 1} \stackrel{T \rightarrow 0} \rightarrow \left\{% \begin{array}{ll} 1, & \hbox{$\frac{\vec{p}^2}{2m} + V(\vec{r}) < \mu$} \\ 0, & \hbox{$\frac{\vec{p}^2}{2m} + V(\vec{r}) > \mu$} \\ \end{array}% \right. }

Accordingly, also the density profile changes smoothly from its gaussian form at high temperatures to its zero temperature shape:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_F(\vect{r}) &=& \Intp{p} \, f(\vect{r},\vect{p}) \stackrel{T\rightarrow 0}{\rightarrow} \int_{\left|\vect{p}\right|< \sqrt{2m(\mu-V(\vect{r}))}} \frac{{\rm d}^3\vect{p}}{(2\pi\hbar)^3}\nonumber\\ &=& \frac{1}{6\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \left(\mu - V(\vect{r})\right)^{3/2}. }

In terms of local Fermi energy, For a harmonic trap we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N &=& \Int{r} \; n_F(\vect{r}) = \frac{1}{6} \left(\frac{E_F}{\hbar \bar{\omega}}\right)^3\nonumber\\ \Rightarrow E_F &=& \hbar \bar{\omega} (6 N)^{1/3} }

and for the zero-temperature profile

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_F(\vect{r}) &=& \frac{8}{\pi^2} \frac{N}{R_{Fx} R_{Fy} R_{Fz}} \; \left[\max \left(1 - \sum_i \frac{x_i^2}{R_{Fi}^2},0\right)\right]^{3/2} }

with the Fermi radii Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{F{x,y,z}} = \sqrt{\frac{2 E_F}{m\omega_{x,y,z}^2}}} . The profile of the degenerate Fermi gas has a rather flat top compared to the gaussian profile of a thermal cloud, as the occupancy of available phase space cells, saturates at unity.

=

At finite Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T \lesssim T_F} , we can understand the shape of the cloud by comparing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k T} with the local Fermi energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_F(\vec{r})} . For the outer regions in the trap where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k T \gg \epsilon_F(\vec{r})} , the gas shows a classical (Boltzmann) density distribution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n(\vec{r}) \propto e^{-\beta V(\vec{r})}} . In the inner part of the cloud where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B T \ll \epsilon_F(\vect{r})$, the density is of the zero-temperature form <math>n(\vec{r}) \propto (E_F - V(\vect{r}))^{3/2}} . The Polylogarithm smoothly interpolates between the two regimes. We notice here the difficulty of thermometry for very cold Fermi clouds: Temperature only affects the far wings of the density distribution. While for thermal clouds above Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_F} , the size of the cloud is a direct measure of temperature, for cold Fermi clouds one needs to extract the temperature from the shape of the distribution's wings.

Note that the validity of the above derivation required the Fermi energy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_F} to be much larger than the level spacing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{x,y,z}} . For example, in very elongated traps, and for low atom numbers, one can have a situation where this condition is violated in the tightly confining radial dimensions.