Difference between revisions of "BEC-BCS Crossover"
imported>Junruli |
imported>Junruli |
||
Line 12: | Line 12: | ||
* The temperature scale is the ''Debye temperature'' because of the involvement of the hosting lattice in the pairing mechanism. This temperature is further modified by the pairing energy and the density of states on the Fermi sea. | * The temperature scale is the ''Debye temperature'' because of the involvement of the hosting lattice in the pairing mechanism. This temperature is further modified by the pairing energy and the density of states on the Fermi sea. | ||
=== Characteristic Temperature Scale === | === Characteristic Temperature Scale === | ||
+ | It is not clear until the discovery of | ||
=== Pairing on the Fermi surface === | === Pairing on the Fermi surface === |
Revision as of 15:47, 11 May 2017
Contents
BCS superfluidity
Superfluidity of boson was first discovered in system at a critical temperature of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_C \sim 2.2K} . This was connected to the formation of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^4 He} condensates. Superfluidity of fermions, the electrons, was first discovered in Mecury at a transition temperature , which is known as the `superconductivity' of metals. \\ In the early age, there are two major confusions about the fermionic superfluidity
- what is the mechanism for superfluidity of fermions (electrons)?
- It is intuitive to suggest that two electrons could form tightly bounded pairs (Schafroth pairs) and then form condensates. However, there was no known interaction which is strong enough to overcome the Coulomb repulsion.
- why does it happen at such low temperature compared with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_F }
(typically Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim 10^4 K}
in metal)?
- For bosonic case in , we can estimate the transition temperature Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{BEC} } (assuming phase space density 1 and typical Helium density) to be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{BEC} \sim 3K} which is consistent with the experimental findings. However, the fermi temperature in a fermionic system in Mercury is much higher (10^4) than the observed superfluidity transition temperature.
The two puzzles remain unresolved until 1956 when Bardeen, Cooper and Schrieffer proposed the BCS theory. In short:
- It is correct to think of fermion (electron) pairs. However, instead of the tightly bound pairs, the pair here is the loosely bound BCS pair of electrons formed due to the effective attractive interaction mediated by the hosting lattice.
- The temperature scale is the Debye temperature because of the involvement of the hosting lattice in the pairing mechanism. This temperature is further modified by the pairing energy and the density of states on the Fermi sea.
Characteristic Temperature Scale
It is not clear until the discovery of
Pairing on the Fermi surface
=
Back to: Quantum gases