Difference between revisions of "Ideal Bose Gas"
imported>Junruli |
imported>Junruli |
||
Line 3: | Line 3: | ||
In this section, we summarize some basic and useful thermodynamic results for Bose-Einstein condensation in a uniform, non-interacting gas of bosons. Most of the discussion here will be limited to 3D case. Physics for lower dimensions will be mentioned in the end. | In this section, we summarize some basic and useful thermodynamic results for Bose-Einstein condensation in a uniform, non-interacting gas of bosons. Most of the discussion here will be limited to 3D case. Physics for lower dimensions will be mentioned in the end. | ||
We focused on the semi-classical case where <math>kT \gg \delta E</math>. Here <math> \delta E</math> is the scale for enery splitting in the trapping potential (for example, <math> \delta E = \hbar \omega</math> for 3D harmonic trapping. This is usually valid in a real experiment where <math>kT \approx 2000 Hz</math> and <math>\delta E \approx 100Hz </math> | We focused on the semi-classical case where <math>kT \gg \delta E</math>. Here <math> \delta E</math> is the scale for enery splitting in the trapping potential (for example, <math> \delta E = \hbar \omega</math> for 3D harmonic trapping. This is usually valid in a real experiment where <math>kT \approx 2000 Hz</math> and <math>\delta E \approx 100Hz </math> | ||
− | It seems to be contradictary to the nature of BEC when most of the population is found in the single ground state, but this description is a good enough approximation in many situations. Fully quantum description is necessary for some cases as we will see in the | + | It seems to be contradictary to the nature of BEC when most of the population is found in the single ground state, but this description is a good enough approximation in many situations. Fully quantum description is necessary for some cases as we will see in the Pdagogical Example in end. |
− | |||
=== Thermodynamics of a Bose Gas === | === Thermodynamics of a Bose Gas === | ||
==== Phase Space Density ==== | ==== Phase Space Density ==== |
Revision as of 21:45, 4 May 2017
A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures very close to 0K (usually ~100nK in experiments). Under such conditions, a large fraction of bosons occupies the lowest quantum state, at which point macroscopic quantum phenomena become apparent.
Contents
Overview
In this section, we summarize some basic and useful thermodynamic results for Bose-Einstein condensation in a uniform, non-interacting gas of bosons. Most of the discussion here will be limited to 3D case. Physics for lower dimensions will be mentioned in the end. We focused on the semi-classical case where . Here is the scale for enery splitting in the trapping potential (for example, for 3D harmonic trapping. This is usually valid in a real experiment where and It seems to be contradictary to the nature of BEC when most of the population is found in the single ground state, but this description is a good enough approximation in many situations. Fully quantum description is necessary for some cases as we will see in the Pdagogical Example in end.
Thermodynamics of a Bose Gas
Phase Space Density
The fundamental difference between a BEC and a classical gas is the occupancy of a single-particle state. In a classical gas, the mean occupation number for a single quantum state satisfies the Boltzmann distribution which is much less than unity. This feature is qualitatively captured by the defined as (3D, homogeneous gas)
where is the thermal de Broglie wavelength.
Some typical parameters for
- Classical thermal gas
- Atom density
- Interatomic distance
- Thermal de Broglie wavelength Failed to parse (syntax error): {\displaystyle \lambda_T \sim 10^{-2} \text{nm}(T = 300K) }
- BEC in dilute gas
- Atom density
- Interatomic distance
- Thermal de Broglie wavelength Failed to parse (syntax error): {\displaystyle \lambda_T \sim 10^{3} \text{nm}(T = 100nK) }
The Bose-Einstein Distribution
For non-interacting bosons in thermodynamic equilibrium, the mean occupation number of the single-particle state is
At high temperature, the chemical potential lies below . As temperature is lower, the chemical potential rises until it reaches and the mean occupation numbers increase.
Transition Temperature - Semi-classical Picture
When , the occupation number on the ground state can be arbitrarily large, indicating the emrgence of a condensate. The corresponding temperature is the transition temperature . can be calculated with the critieria that the maximum number of particles can be held in the excited states is equal to the total particle number . In the semi-classical limit where the sum over all states is replaced by an integral and simple assumption that we have
Here is the density of states. The number of atoms in the ground state is . The form of the transition temperature and therefore the condensate atom number depends strongly on the form of which is affected by the dimension, trapping potential and the dispersion of the system. Under the most general assumption that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\epsilon) \propto \epsilon^{\alpha - 1} } , we reach
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \propto C_{\alpha}(kT_c)^{\alpha}\int\limits_{0}^{\infty} dx\frac{x^{\alpha-1}}{e^{x} - 1} \,. }
where . Straightforwardly we have a simple scaling function
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kT_c \propto N^{\frac{1}{\alpha}} \,. }
Some common cases are summarized below
cases: | 3D box | 2D box | 3D Harmonic | 2D Harmonic | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3/2} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} |
We see that the semi-classical picture is already good enough to capture some basic condensate physics. As a quick exaple, for the parameters in a typical AMO experiment (3D, harmonic trapping)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \sim 10^6 }
- harmonic trapping frequencies Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_i \sim 2\pi \times100Hz }
We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c \approx 450nK }
Thermodynamic Properties
The thermodynamic properties Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} can be readily calculated from the Bose distributions and sum over all the states.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \int\limits_{0}^{\infty} H(\epsilon)f(\epsilon, \mu, T) g(\epsilon) d \epsilon \,. }
For example, the total energy
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \int\limits_{0}^{\infty} \epsilon f(\epsilon, \mu, T) g(\epsilon) d \epsilon \propto (kT)^{\alpha} \int\limits_{0}^{\infty}\frac{x^{\alpha}}{e^x-1} dx \,. }
We therefore can obtain a scaling law for all the importnat thermodynamic quantities as listed below assuming that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\epsilon) \propto \epsilon^{\alpha - 1}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\propto T^{\delta}}
Thermodynamic Property: | E | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_V=\partial E/\partial T} | Entropy S |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} |
It is also useful to express the relationship with dimensionless parameter considering we therefore obtain
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \propto NkT\gamma^{\alpha}, C_V \propto Nk\gamma^{\alpha}, S \propto Nk\gamma^{\alpha} \,. }
Padagogical Example
Back to: Quantum gases