Difference between revisions of "Ideal Bose Gas"
imported>Junruli |
imported>Junruli |
||
Line 29: | Line 29: | ||
</math> | </math> | ||
At high temperature, the chemical potential lies below <math> \epsilon_{min} </math>. As temperature is lower, the chemical potential rises until it reaches <math> \epsilon_{min} </math> and the mean occupation numbers increase. | At high temperature, the chemical potential lies below <math> \epsilon_{min} </math>. As temperature is lower, the chemical potential rises until it reaches <math> \epsilon_{min} </math> and the mean occupation numbers increase. | ||
− | ==== | + | ==== Transition Temperature <math> T_c</math> ==== |
− | When <math> \nu = \epsilon_{min} </math> | + | When <math> \nu = \epsilon_{min} </math> , the occupation number on the ground state can be arbitrarily large, indicating the emrgence of a condensate. |
+ | When condensate exists, we have | ||
+ | :<math> | ||
+ | N = N_{0}+N_{ex} | ||
+ | \,. | ||
+ | </math> | ||
+ | with where <math> N </math> is the total number of atoms and <math> N_0, N_{ex} </math> are numbers of atoms in the ground and the excited state. | ||
==== Thermaldynamic Properties ==== | ==== Thermaldynamic Properties ==== | ||
The thermaldynamic properties can be readily calculated from the Bose distributions and sum over all the states. | The thermaldynamic properties can be readily calculated from the Bose distributions and sum over all the states. |
Revision as of 21:40, 3 May 2017
A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures very close to 0K (usually ~100nK in experiments). Under such conditions, a large fraction of bosons occupies the lowest quantum state, at which point macroscopic quantum phenomena become apparent.
Contents
Overview
In this section, we summarize some basic and useful thermodynamic results for Bose-Einstein condensation in a uniform, non-interacting gas of bosons. Most of the discussion here will be limited to 3D case. Physics for lower dimensions will be mentioned in the end.
Thermodynamics of a Bose Gas
Phase Space Density
The fundamental difference between a BEC and a classical gas is the occupancy of a single-particle state. In a classical gas, the mean occupation number for a single quantum state satisfies the Boltzmann distribution which is much less than unity. This feature is qualitatively captured by the defined as (3D, homogeneous gas)
where is the thermal de Broglie wavelength.
Some typical parameters for
- Classical gas
- Atom density
- Interatomic distance
- Thermal de Broglie wavelength Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_T \sim 10^{-2} \text{nm}(T = 300K) }
- BEC in dilute gas
- Atom density
- Interatomic distance
- Thermal de Broglie wavelength Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_T \sim 10^{3} \text{nm}(T = 100nK) }
The Bose-Einstein Distribution
For non-interacting bosons in thermodynamic equilibrium, the mean occupation number of the single-particle state is
At high temperature, the chemical potential lies below . As temperature is lower, the chemical potential rises until it reaches and the mean occupation numbers increase.
Transition Temperature
When , the occupation number on the ground state can be arbitrarily large, indicating the emrgence of a condensate. When condensate exists, we have
with where is the total number of atoms and are numbers of atoms in the ground and the excited state.
Thermaldynamic Properties
The thermaldynamic properties can be readily calculated from the Bose distributions and sum over all the states. The total energy