Difference between revisions of "Damped vacuum Rabi oscillations"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Zakven
(→‎Purcell factor: cavity enhanced spontaneous emission: Corrected factors of two in the Rabi frequency and electric field normalization)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
 
The optical Bloch equations can be generalized to describe not just an
 
The optical Bloch equations can be generalized to describe not just an
 
atom interacting with the vacuum, but also an atom and a single cavity
 
atom interacting with the vacuum, but also an atom and a single cavity
Line 65: Line 64:
 
and denote this three state space by <math>|1{\rangle}=|e,0{\rangle}</math>, <math>|2{\rangle}=|g,1{\rangle}</math>, and
 
and denote this three state space by <math>|1{\rangle}=|e,0{\rangle}</math>, <math>|2{\rangle}=|g,1{\rangle}</math>, and
 
<math>|3{\rangle}=|g,0{\rangle}</math>.  Written out explicitly in terms of the <math>3\times3</math>
 
<math>|3{\rangle}=|g,0{\rangle}</math>.  Written out explicitly in terms of the <math>3\times3</math>
density matrix elements <math>\rho_{jk}</math>, the master equation is
+
density matrix elements <math>\rho_{jk}</math>, the master equation is (for the case <math>\delta=0</math> with the system starting in the state <math>|1\rangle</math>)
 
:<math>\begin{array}{rcl}   
 
:<math>\begin{array}{rcl}   
\dot{\rho}_{11} &=& -\frac{\Omega_0}{2}(\rho_{12} + \rho_{21})
+
\dot{\rho}_{11} &=& i\frac{\Omega_0}{2}(\rho_{12} - \rho_{21})
 
\\
 
\\
\dot{\rho}_{22} &=& \frac{\Omega_0}{2}(\rho_{12} + \rho_{21})
+
\dot{\rho}_{22} &=& -i\frac{\Omega_0}{2}(\rho_{12} - \rho_{21})
 
-\kappa \rho_{22}
 
-\kappa \rho_{22}
 
\\
 
\\
\dot{\rho}_{12} + \dot{\rho}_{21}
+
\dot{\rho}_{12}
&=& \Omega_0(\rho_{11} - \rho_{22})
+
&=& i\frac{\Omega_0}{2}(\rho_{11} - \rho_{22})
-\frac{\kappa}{2} (\rho_{12}+\rho_{21})
+
-\frac{\kappa}{2} \rho_{12}
 +
\\
 +
\dot{\rho}_{21}
 +
&=& -i\frac{\Omega_0}{2}(\rho_{11} - \rho_{22})
 +
-\frac{\kappa}{2} \rho_{21}
 
\\
 
\\
 
\dot{\rho}_{33} &=& \kappa \rho_{22}
 
\dot{\rho}_{33} &=& \kappa \rho_{22}
 
\,.
 
\,.
 
\end{array}</math>
 
\end{array}</math>
When the cavity damping rate is small, <math>\kappa<2\Omega_0</math>, then the
+
When the cavity damping rate is small, <math>\kappa\ll\Omega_0</math>, then the
 
vacuum Rabi oscillations are damped, with average damping rate
 
vacuum Rabi oscillations are damped, with average damping rate
<math>\kappa/2</math>.
+
<math>\kappa/2</math> since the atoms spend roughly half their time in the excited state.
  
When the cavity damping rate is large, <math>\kappa>2\Omega_0</math>, then the
+
When the cavity damping rate is large, <math>\kappa\gg\Omega_0</math>, then the
 
atomic excitation is irreversibly damped, and no oscillations occur.
 
atomic excitation is irreversibly damped, and no oscillations occur.
Let <math>P_e</math> be the probability of being in the <math>|1 \rangle  = |e,0{\rangle}</math> state.
+
Let <math>P_e</math> be the probability of being in the <math>|1 \rangle  = |e,0{\rangle}</math> state. We can combine two of the above equations to write
 +
:<math>\begin{array}{rcl} 
 +
\dot{\rho}_{12} - \dot{\rho}_{21}
 +
&=& i\Omega_0(\rho_{11} - \rho_{22})
 +
-\frac{\kappa}{2} (\rho_{12}-\rho_{21})
 +
\,.
 +
\end{array}</math>
 
Since in this case <math>\dot{\rho}_{12} + \dot{\rho}_{21}\approx 0</math>, and
 
Since in this case <math>\dot{\rho}_{12} + \dot{\rho}_{21}\approx 0</math>, and
 
<math>\rho_{22}\approx 0</math>, it follows that
 
<math>\rho_{22}\approx 0</math>, it follows that
 +
:<math>
 +
    (\rho_{12}-\rho_{21}) \approx \frac{2i\Omega_0}{\kappa}(\rho_{11}-\rho_{22})
 +
\,,
 +
</math>
 +
Since in this regime, we slowly try to populate state <math>|2{\rangle}</math> while it quickly decays away, we can approximate <math>\rho_{22}\ll\rho_{11}</math> giving
 +
:<math>
 +
    (\rho_{12}-\rho_{21}) \approx \frac{2i\Omega_0}{\kappa}\rho_{11}
 +
\,,
 +
</math>
 +
Finally plugging this back into the optical bloch equation for <math>\rho_{11}</math> yields
 
:<math>  
 
:<math>  
 
\dot{\rho}_{11} = -\frac{\Omega_0^2}{\kappa}\rho_{11}
 
\dot{\rho}_{11} = -\frac{\Omega_0^2}{\kappa}\rho_{11}
 
\,,
 
\,,
 
</math>
 
</math>
so <math>P_e</math> decays exponentially, wirh rate <math>\Gamma_c = \Omega_0^2/\kappa</math>.
+
so <math>P_e</math> decays exponentially, with rate <math>\Gamma_c = \Omega_0^2/\kappa</math>.
 +
Note that a large cavity damping rate slows down the decay of the atom's excited state.  This is due to the fact that the stimulated transition (Rabi oscillation) to the lower state is slowed down by the cavity damping (which is a manifestation of the quantum Zeno effect).
  
 
==== Purcell factor: cavity enhanced spontaneous emission ====
 
==== Purcell factor: cavity enhanced spontaneous emission ====
  
 
How does this compare with the free space spontaneous emission rate
 
How does this compare with the free space spontaneous emission rate
<math>\Gamma</math>?  Recall that the vacuum Rabi frequency is
+
<math>\Gamma</math>?  Recall that the vacuum Rabi frequency is (for the case that the dipole matrix element vector and cavity mode polarization are aligned)
 
:<math>  
 
:<math>  
\Omega_0 = 2 \frac{d E_0}{\hbar}
+
\Omega_0 = \frac{d E_0}{\hbar}
 
\,,
 
\,,
 
</math>
 
</math>
 
where <math>d</math> is the atomic dipole moment and <math>E_0</math> is the electric field
 
where <math>d</math> is the atomic dipole moment and <math>E_0</math> is the electric field
 
amplitude of a single photon at the atomic transition frequency
 
amplitude of a single photon at the atomic transition frequency
<math>2\pi\omega_0</math>,
+
<math>\omega_0</math> (Note that this is a standing wave in a cavity so it is a factor of two larger than the field for a running wave),
 
:<math>  
 
:<math>  
E_0 = \sqrt{\frac{\hbar\omega_0}{2\epsilon_0 V}}
+
E_0 = \sqrt{\frac{2\hbar\omega_0}{\epsilon_0 V}}
 
\,,
 
\,,
 
</math>
 
</math>
Line 114: Line 134:
 
\,.
 
\,.
 
</math>
 
</math>
Letting <math>Q=1/\kappa</math>, we thus find that
+
Letting <math>Q=\omega_0/\kappa</math>, we thus find that
 
:<math>  
 
:<math>  
 
\Gamma_c = \frac{2d^2}{\epsilon_0\hbar} \frac{Q}{V}
 
\Gamma_c = \frac{2d^2}{\epsilon_0\hbar} \frac{Q}{V}
Line 121: Line 141:
 
as the decay rate of the atom in the cavity.
 
as the decay rate of the atom in the cavity.
  
Recall that the spontaneous emission rate of an atom in free space, as
+
Recall that the [[Interaction_of_an_atom_with_an_electromagnetic_field#Spontaneous_emission_rate|spontaneous emission rate of an atom in free space]], as
 
determined by Fermi's golden rule, is
 
determined by Fermi's golden rule, is
 
:<math>  
 
:<math>  
Line 133: Line 153:
 
where we take <math>\lambda = 2\pi c/\omega_0</math> as being the wavelength of
 
where we take <math>\lambda = 2\pi c/\omega_0</math> as being the wavelength of
 
the cavity field, which is assumed to be resonant with the atomic
 
the cavity field, which is assumed to be resonant with the atomic
transition frequency <math>2\pi\omega_0</math>.  Note that <math>\eta</math> is {\em
+
transition frequency <math>\omega_0</math>.  Note that <math>\eta</math> is ''independent'' of the atomic dipole strength, and determined solely by
independent} of the atomic dipole strength, and determined solely by
+
cavity parameters.  Moreover, note that for small, high-<math>Q</math> cavities, the decay rate of the atom in the
cavity parameters.  Moreover, note that for small, high-<math>Q</math> cavities,
 
with <math>Q\ll \omega_0/2\Omega_0</math>, the decay rate of the atom in the
 
 
cavity can be much larger than the free space spontaneous emission
 
cavity can be much larger than the free space spontaneous emission
 
rate.  This "cavity enhanced" spontaneous emission rate was predicted
 
rate.  This "cavity enhanced" spontaneous emission rate was predicted
 
by Purcell (1946), an observation credited as being the starting point
 
by Purcell (1946), an observation credited as being the starting point
 
of cavity QED.
 
of cavity QED.

Latest revision as of 22:45, 28 March 2017

The optical Bloch equations can be generalized to describe not just an atom interacting with the vacuum, but also an atom and a single cavity mode, each interacting with its own reservoir. This is the master equation for cavity QED, and using such a master equation we can revisit the phenomenon of vacuum Rabi oscillations and see what happens in the presence of damping.

Generalization of the optical Bloch equations

The starting point for generalizing the optical Bloch equations is the Lindblad form we previously saw in the full-derivation walkthrough,

In this expression, and are "jump operators," and represent changes that occur to the atom when distinct dissipative events happen ("distinct" meaning that the environment changes between orthogonal states).

We may write the master equation for our more general scenario by replacing the atomic density matrix by a general density matrix representing the atom and cavity field, and by replacing the atomic jump operators with general jump operators ,

Note that the include normalization factors which reflect their probabilities of occurrence. In other words, for the atom + vacuum model, .

Master equation for cavity QED system

For the cavity QED model, the atom and cavity field each have possible jump operators. In general, the atom and cavity may both couple to a thermal field with average photons. In such a case, the jump operators are , , , and , where parameterizes the spontaneous emission rate of the atom in free space, and is parameterizes the cavity factor.

Experimentally, typically the environment, the vacuum, is essentially at zero temperature, so , in which case the only two relevant jump operators are and .

Damped vacuum Rabi oscillations

Vacuum Rabi oscillations, in the absence of damping, involve only two states of the atom and cavity: and . When damping is added, the state must be included, since both the atom and cavity states can decay and loose their quanta of energy. Moreover, because only one quantum of excitation is involved in this system, we can observe the essential physics by considering the case when is zero (no spontaneous emission), but is nonzero (the cavity is leaky). Let be the vacuum Rabi frequency, and denote this three state space by , , and . Written out explicitly in terms of the density matrix elements , the master equation is (for the case with the system starting in the state )

When the cavity damping rate is small, , then the vacuum Rabi oscillations are damped, with average damping rate since the atoms spend roughly half their time in the excited state.

When the cavity damping rate is large, , then the atomic excitation is irreversibly damped, and no oscillations occur. Let be the probability of being in the state. We can combine two of the above equations to write

Since in this case , and , it follows that

Since in this regime, we slowly try to populate state while it quickly decays away, we can approximate giving

Finally plugging this back into the optical bloch equation for yields

so decays exponentially, with rate . Note that a large cavity damping rate slows down the decay of the atom's excited state. This is due to the fact that the stimulated transition (Rabi oscillation) to the lower state is slowed down by the cavity damping (which is a manifestation of the quantum Zeno effect).

Purcell factor: cavity enhanced spontaneous emission

How does this compare with the free space spontaneous emission rate ? Recall that the vacuum Rabi frequency is (for the case that the dipole matrix element vector and cavity mode polarization are aligned)

where is the atomic dipole moment and is the electric field amplitude of a single photon at the atomic transition frequency (Note that this is a standing wave in a cavity so it is a factor of two larger than the field for a running wave),

and is the cavity volume. This gives

Letting , we thus find that

as the decay rate of the atom in the cavity.

Recall that the spontaneous emission rate of an atom in free space, as determined by Fermi's golden rule, is

The ratio of this rate to the decay rate in the cavity is

where we take as being the wavelength of the cavity field, which is assumed to be resonant with the atomic transition frequency . Note that is independent of the atomic dipole strength, and determined solely by cavity parameters. Moreover, note that for small, high- cavities, the decay rate of the atom in the cavity can be much larger than the free space spontaneous emission rate. This "cavity enhanced" spontaneous emission rate was predicted by Purcell (1946), an observation credited as being the starting point of cavity QED.