Difference between revisions of "Quantum gases"

From amowiki
Jump to navigation Jump to search
imported>Ketterle
imported>Ketterle
Line 3: Line 3:
 
* [[Techniques for cooling to ultralow temperatures]]
 
* [[Techniques for cooling to ultralow temperatures]]
 
** Magnetic trapping and evaporative cooling (2009 [https://cua-admin.mit.edu:8443/wiki/images/9/98/Magnetic_trappping_and_evaporative_cooling.pdf Class notes])
 
** Magnetic trapping and evaporative cooling (2009 [https://cua-admin.mit.edu:8443/wiki/images/9/98/Magnetic_trappping_and_evaporative_cooling.pdf Class notes])
* Ultracold Bosons  (20009 [https://cua-admin.mit.edu:8443/wiki/images/a/a6/AMO_class_BEC_09-05-04_short.pdf Class notes])
+
* Ultracold Bosons   
 
+
** 2009 [https://cua-admin.mit.edu:8443/wiki/images/a/a6/AMO_class_BEC_09-05-04_short.pdf Class notes]
 
 
* [[Superfluid to Mott insulator transition]]
 
 
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 
 
 
== Handouts ==
 
 
 
* [http://cua.mit.edu/8.422/HANDOUTS/AMO%20class%20II.pdf Bose-Einstein condensation]
 
 
** Further reading:  Bose-Einstein Condensation in Dilute Gases, C.J. Pethick and H. Smith, selected pages
 
** Further reading:  Bose-Einstein Condensation in Dilute Gases, C.J. Pethick and H. Smith, selected pages
 
**            On Bogoliubov transformation and collective excitation:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases205-214.pdf pp. 205-214]
 
**            On Bogoliubov transformation and collective excitation:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases205-214.pdf pp. 205-214]
 
**            On nonlinear Schrödinger equation:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases146-157.pdf pp. 146-156]
 
**            On nonlinear Schrödinger equation:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases146-157.pdf pp. 146-156]
 
**            On hydrodynamics:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases165-179.pdf pp. 165-179]
 
**            On hydrodynamics:  [http://cua.mit.edu/8.422/HANDOUTS/BECinDiluteGases165-179.pdf pp. 165-179]
* Mott insulator transition
+
* Superlfuid to Mott insulator transition:  Original paper on analytic decoupling solution
 +
* [[Superfluid to Mott insulator transition]]
 +
 
 
* Ultracold Fermi gases  
 
* Ultracold Fermi gases  
**      [http://cua.mit.edu/8.422/HANDOUTS/AMO%20class%20III.pdf Slides on MI transition and BEC-BCS crossover in ultracold fermions]
+
 
 +
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 +
 
  
 
[[Category:8.422]]
 
[[Category:8.422]]

Revision as of 04:27, 7 May 2009

The Bose-Einstein condensate is an exciting frontier of atomic physics, made possible by the addition of new cooling techniques beyond traditional laser cooling. At such low temperatures, new physics arises, which is closely related to the behavior of spin systems in condensed matter systems and phenomena in strongly correlated systems. These "quantum gases" have novel properties which go beyond the hydrodynamics of simple Bose-Einstein condensates, because of the contributions of internal states and spin statistics constraints. Here, we show how the richness of quantum gas physics is accessible to ultracold atoms, by describing the basic techniques used to create ultracold atomic quantum gases, and by exploring some of the novel physical phenomena which arise, such as the superfluid to Mott-insulator transition, and Bose-Fermi mixtures.

  • Ultracold Fermi gases