Difference between revisions of "Light forces"

From amowiki
Jump to navigation Jump to search
imported>Ichuang
imported>Ichuang
Line 1: Line 1:
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 +
 +
This chapter introduces the interaction of motional degrees of freedom with light and internal atomic states.  We begin by re-visiting the optical Bloch equations, and show how that formalism already includes the basis for inclusion of spatial coordinates in the equations of motion.  In particular, we show that the steady state solutions of the optical Bloch equations lead to a nice picture of how atoms excited by an electromagnetic field can feel a friction force.  This formalism provides a basis for an exploration of laser cooling, due to the balance of momentum absorbed from light and momentum released in random directions through spontaneous emission.  We find that this "spontaneous light force" mechanism is responsible for three important modern laser cooling techniques, optical molasses, beam slowing, and magneto-optical traps.  When a very strong light field is applied, the dynamics change, allowing the dipole force of a light beam to manipulate atoms (even single atoms!) through a potential due to the AC Stark shift, as is seen through the dressed atom picture.
  
 
* [[Light forces from steady-state solutions]]
 
* [[Light forces from steady-state solutions]]

Revision as of 15:33, 16 April 2009

This chapter introduces the interaction of motional degrees of freedom with light and internal atomic states. We begin by re-visiting the optical Bloch equations, and show how that formalism already includes the basis for inclusion of spatial coordinates in the equations of motion. In particular, we show that the steady state solutions of the optical Bloch equations lead to a nice picture of how atoms excited by an electromagnetic field can feel a friction force. This formalism provides a basis for an exploration of laser cooling, due to the balance of momentum absorbed from light and momentum released in random directions through spontaneous emission. We find that this "spontaneous light force" mechanism is responsible for three important modern laser cooling techniques, optical molasses, beam slowing, and magneto-optical traps. When a very strong light field is applied, the dynamics change, allowing the dipole force of a light beam to manipulate atoms (even single atoms!) through a potential due to the AC Stark shift, as is seen through the dressed atom picture.