Difference between revisions of "Photon-atom interactions"

From amowiki
Jump to navigation Jump to search
imported>Ketterle
imported>Harhoff
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This chapter begins our application of the optical Bloch equations to the exploration of interactions between photons and atoms.   
+
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 +
 
 +
This chapter explores interactions between photons and atoms, starting from the QED Hamiltonian, using at first a perturbative approach which can be depicted diagrammatically.  Specifically, we discuss the van der Waals and Casimir interactions as an illustration of this approach.  We then present an analysis of a two-level atom excited by light with a frequency nearly equal to that of the atomic transition, a scenario known as resonant scattering.  In this scenario, ordinary perturbation theory fails because of the resonant behavior of the system.  However, we show that the perturbative, diagramtic approach can be generalized by "factoring" out the physics of resonance.  In this manner, we also obtain a description of the physics of an atom interacting with the vacuum, and thus undergoing spontaneous emissionThe result shows both the exponential decay and the level shift expected from analysis of the same scenario using the optical Bloch equations.
  
* [[Derivation of the QED Hamiltonian]]
+
* [[Derivation of the QED Hamiltonian]] ([https://cua-admin.mit.edu:8443/wiki/images/8/86/2009-03-16-QED_Hamiltonian.pdf   2009 Class notes])
** [https://cua-admin.mit.edu:8443/wiki/images/8/88/API_appendix_pp_621-639.pdf API Appendix]    [https://cua-admin.mit.edu:8443/wiki/images/3/37/QED.pdf Summary of formulae]
 
 
* [[Feynman diagrams and perturbative expansion of the time evolution operator]]
 
* [[Feynman diagrams and perturbative expansion of the time evolution operator]]
** [https://cua-admin.mit.edu:8443/wiki/images/9/9a/2009-03-20_Diagrams.pdf 2009 pdf]
+
** [https://cua-admin.mit.edu:8443/wiki/images/9/9a/2009-03-20_Diagrams.pdf 2009 Class notes]
 
**    see API pp. 15-21 and Complement A_I
 
**    see API pp. 15-21 and Complement A_I
* [[Van der Waals interaction]]
+
* [[Van der Waals interaction]] ([https://cua-admin.mit.edu:8443/wiki/images/f/f2/2009-03-30-van_der_Waals.pdf  2009 Class notes])
** [https://cua-admin.mit.edu:8443/wiki/images/f/f2/2009-03-30-van_der_Waals.pdf  2009 pdf]
+
* [[Casimir interaction]] ([https://cua-admin.mit.edu:8443/wiki/images/c/ce/2009-04-01-Casimir.pdf 2009 Class notes])
**            see API pp. 121-126
+
* [[Resonant scattering]] ([https://cua-admin.mit.edu:8443/wiki/images/5/5f/2009-04-01-Resonant_interactions.pdf 2009 Class notes])
**          [http://cua.mit.edu/8.422/HANDOUTS/VanDerWaalsInteraction.pdf four pages course notes from Dan Kleppner]
 
**          [http://cua.mit.edu/8.422/HANDOUTS/Retarded...long-range%20potentials.pdf Physics Today paper by L. Spruch (Nov. 1986, p. 37)]
 
* [[Resonant scattering]]
 
 
 
<categorytree mode=pages style="float:right; clear:right; margin-left:1ex; border:1px solid gray; padding:0.7ex; background-color:white;" hideprefix=auto>8.422</categorytree>
 
 
 
== Handouts (2007) ==
 
 
 
* Casimir force    Lecture notes
 
**                  [http://cua.mit.edu/8.422/HANDOUTS/Cavity%20quantum%20electrodynamics.pdf Copies from Serge Haroche’s summer school notes]
 
**                  [http://cua.mit.edu/8.422/HANDOUTS/Jaffe2005_Casimir.pdf Jaffe paper on Casimir force and zero-point energy]
 
* Resonant scattering                            see API pp. 93-97 and pp. 226 ff.
 
 
 
  
 
[[Category:8.422|4]]
 
[[Category:8.422|4]]

Latest revision as of 14:50, 3 February 2011

This chapter explores interactions between photons and atoms, starting from the QED Hamiltonian, using at first a perturbative approach which can be depicted diagrammatically. Specifically, we discuss the van der Waals and Casimir interactions as an illustration of this approach. We then present an analysis of a two-level atom excited by light with a frequency nearly equal to that of the atomic transition, a scenario known as resonant scattering. In this scenario, ordinary perturbation theory fails because of the resonant behavior of the system. However, we show that the perturbative, diagramtic approach can be generalized by "factoring" out the physics of resonance. In this manner, we also obtain a description of the physics of an atom interacting with the vacuum, and thus undergoing spontaneous emission. The result shows both the exponential decay and the level shift expected from analysis of the same scenario using the optical Bloch equations.