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We prove an optical radiation Earnshaw theorem: A small dielectric particle cannot be trapped by using only the

scattering force of optical radiation pressure. A corollary is that the gradient or dipole force is necessary to any suc-

cessful optical trap. We discuss the implications of the theorem for recent proposals for the optical trapping of
neutral atoms.

We derive an optical Earnshaw theorem that states
that it is impossible to trap a small dielectric particle at
a point of stable equilibrium in free space by using only
the scattering force of radiation pressure. The theorem
is analogous to Earnshaw's theorem in electrostatics,l
which states that it is impossible to trap a charged
particle by using only electrostatic forces. We show
explicitly that two recently proposed traps for neutral
atoms using the scattering force are in fact unstable, in
agreement with our general theorem. The implications
of the theorem for the stable trapping and cooling of
atoms are discussed.

It is well known that optical trapping of dielectric
particles is possible by using the forces of radiation
pressure from lasers.2 '3 These forces arise from the
scattering of light momentum by the particles.4 Mi-
crometer-sized particles (in the Mie-scattering regime,
d > X) have been optically levitated 5 by a single laser
beam and trapped stably by two beams.2' 6

Here the principal contribution to the light scattering
comes from refraction of the incident light rays passing
through the particle.2 For a spherical Mie particle in
a plane-wave beam, the scattering is symmetric and the
force is in the direction of the incident Poynting vector.
If the Mie particle is in a beam with a transverse gra-
dient, the scattering is no longer symmetric and the
force has an additional component transverse to the
Poynting vector. With submicrometer-sized particles
(in the Rayleigh-scattering regime, d << A; this includes
atoms) it is again convenient and useful to divide the
total force into two components. One is called the
scattering force.2' 7 It is proportional to the scattering
cross section of the particle and for paraxial beams and
scalar polarizability is in the direction of the Poynting
vector. It is a nonconservative force resulting from the
removal of momentum from the incident beam. The
other is called the gradient forceY-1' It arises from the
interference of the scattered field with the incident field
and is proportional to the in-phase component of the
particle's polarizability. It attracts particles with
positive polarizability to regions of high electric-field
strength. The gradient force is a conservative force
whose potential is the free energy' 2 of the particle.

Thus it can also be regarded as the electrostrictive force
on the optically induced dipole of the particle in a
field-intensity gradient.13 For this reason the gradient
force on Rayleigh particles is also referred to as the di-
pole force. Stable trapping of submicrometer dielectric
particles has been observed in the standing-wave field
of two beams.14 Trapping of neutral atoms is more
difficult and has not yet been accomplished, although
the basic forces have been experimentally demon-
strated.1 5 In this case resonance can be used to increase
the magnitude of the forces, but saturation effects limit
the trap depth, and the heating effects of quantum
fluctuations become important.

It is our thesis that the gradient force is essential to
any trap for small particles. The strong velocity de-
pendence of the scattering force has led to the useful
concept of optical cooling16 of atoms by light tuned
below resonance, but the scattering force by itself can-
not form a trap.

Before the recent proposals of Minogin17 and Mino-
gin and Javanainen'8 for atom traps based on the scat-
tering force, all the experimentally demonstrated or
proposed optical traps for neutral particles involved use
of the gradient force. The earliest proposal for trapping
atoms about a point of stable equilibriums involved
confining atoms to the intensity maxima of standing-
wave fields. The light was tuned below resonance by
'YN/2 (half of the natural line width) so that the same
beams would give trapping and optical cooling. This
proposed trap is stable, in that the gradient force is re-
storing for arbitrary displacements from a point of
maximum electric energy density. However, saturation
of the atomic resonance limits the depth of this trap to
an energy of about hYN, which is the same as the min-
imum kinetic energy to which the atoms can be cooled.
Thus this trap is leaky, and in fact the same result seems
to occur for any trap in which the same beam is used for
both trapping and cooling.

To overcome these difficulties another class of trap
was proposed 11 in which the trapping field was tuned
much farther below resonance. This inhibits saturation
and with the help of beam focusing allows the trap
depth to be increased, in proportion to the detuning, by
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as much as 104 times. Since the detuning similarly
decreases the optical cooling, the use of auxiliary
damping beams19'20 tuned closer to resonance was
proposed for additional cooling. The dynamic Stark
shift of the atomic resonance caused by the trapping
field substantially reduces the effectiveness of the
auxiliary damping beams, however, so this proposal has
its own difficulties.

The purpose of the most recent trap proposals of
Minogin'7 and of Minogin and Javanainen'8 was to
circumvent all these difficulties by relying solely on the
scattering force for stability. These workers suggested
the use of four or six beams to provide simultaneous
trapping and cooling. However, as we now show spe-
cifically for these proposed traps and in general for any
trap, directions exist at which the scattering force points
away from the trap, making it unstable. As Earnshaw's
theorem in electrostatics is a direct result of div(E) =
0 in vacuum, so our theorem is a direct result of
div(scattering force) = 0, a relation that applies so long
as saturation effects are neglected.

These recent trap proposals make use of the scat-
tering force in the far field of Gaussian laser beams, so
let us first describe this force. Figure 1 shows the ge-
ometry. In the far field (z >> 7rwo2/X), the scattering
force is proportional to the optical power hitting the
particle and is directed normal to the spherical phase
fronts, whose centers of curvature are at the beam waist.
In the paraxial approximation, with z >> x or z >> y, we
can express the nonzero components of the scattering
force F in cylindrical coordinates as

F8 = Kw-2 exp(-2r2 /w 2), (1)

Fr = F, (r/z), (2)

where the spot size w = Xzl/rwo and K is a constant
proportional to the particle's scattering cross section
and to the total power in the light beam. Only the ex-
ponential factor distinguishes this force from the elec-
trostatic force on a test charge that is due to a point
charge located on the axis at the beam waist at z = 0.
Otherwise the force is similarly directed and has the
same 1/R2 dependence on position.

Consider now the four-beam trap of Minogen and
Javanainan,18 as illustrated in Fig. 2. Here four beams
are tetrahedrally arranged in an attempt to form a trap
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Fig. 1. Geometry of the scattering force on a particle placed
at Q in the far field of a Gaussian beam with waist wo at z =
0.
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Fig. 2. Geometry of a proposed tetrahedral far-field scat-
tering force atom trap, which we show to be unstable. The
four beams waists are at A, B, C, and D.

at their intersection 0. Now Earnshaw's theorem says
that the analogous electrostatic trap with a tetrahedral
arrangement of four charges located at A, B, C, and D
is unstable. In the optical trap, as one proceeds along
the z axis, for example, away from the intersection point
0, the z-directed beam maintains its electrostatic
analogy but the other beams, making an angle with the
z axis, lose effectiveness because of the exponential
falloff. Hence, as a particle proceeds out of the trap
along the +z axis, the restoring force that is due to the
other beams is less than in the electrostatic case, which
is already unstable. Indeed, if one adds the forces that
are due to the four beams, one finds along the z axis in
the neighborhood of the intersection (x = y = z = 0) the
result that FI = K(4z/3w2 )2 + .. .. Not only is there
no linear restoring force, but the force always points in
the direction of positive z.

Similar considerations apply to Minogin's six-beam
trap.' 7 Here the beam waists are located along the x,
y, and z coordinate axes at a distance I from the origin,
and all six beams shine inward toward the trap situated
at the origin. Again one finds that there is no linear
restoring force. There is a cubic restoring force along
the axes given by Fi = -8Kx 3/lW4 (for the xi axis), but
the particle can escape along any of the [1, 1, 1] direc-
tions that make equal angles with the coordinate axes.
If s is the distance away from the origin in one of these
directions, one finds that F= 16Ks3 /31w4. Again the
trap is unstable.

These specific results can be generalized to any sim-
ilar trap that uses the far fields of Gaussian beams by
noting from Eqs. (1) and (2) that div(F) = 0. Such a
divergenceless force can be represented by continuous
lines, which must leave any volume that they enter, thus
necessarily providing escape routes for the particles.
Any sum of such forces has the same property.

We can proceed further to prove in general that the
scattering force has zero divergence for small dipolar
particles of arbitrary shape and properties and for op-
tical fields of arbitrary geometry, provided only that the
particle's dipole is linearly related to the field. We do
not consider saturation effects, but they are detrimental
to the formation and stability of any trap. The non-
relativistic Lorentz force exerted on a small neutral
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particle by the light field in the electric-dipole ap-
proximation is2 0 F1 = (1/2)Rexj.g* .OE/dxf J, where A

is the particle's dipole moment, E is the electric field of
the incident wave, x, are the Cartesian-coordinate unit
vectors, and the sum over j is implied. A single fre-
quency [E m exp(-iwt)] is assumed. This force is the
sum of the electric force on the dipole moment of the
particle and the magnetic force on the associated cur-
rent. For quantum systems such as atoms, the same
expression applies20 for the expectation value of the
force if the light field is coherent and A is the expecta-
tion value for the atomic dipole. The trapping-force
field is this force evaluated for a stationary atom.

If y and E are related linearly, then $u = X -E, where
X is an arbitrary constant polarizability tensor. Now
any such tensor can be developed as X = X' + iX", where
X' and X' are Hermitian. In the absence of a dc mag-
netic field XV and X' are symmetric and therefore real,
but that is not necessary to our argument. On inserting
this development for A into the expression for F1, we
obtain F1 = Fg + F 8, where

Fg = (1/4)grad(E* -x'- E), (3)

F, = (1/2)Im{j2 1E* X" * OE/Oxj}. (4)

These are the general expressions for the gradient force
and the scattering force, respectively. One can see that
the potential for the gradient force is just the ac analog
of the electrostatic free energy [-(1/2),u - El of a di-
pole.'2 The scattering force is intimately related to the
rate of work done on the dipole by the incident field
[(w/2)E* XI" -E] and therefore to the absorption plus
scattering cross section of the particle. In the case of
scalar polarizability and paraxial radiation the scat-
tering force is proportional to Poynting's vector. Using
the wave equation v2E = -(Wcc)2 E, one can quickly
show from Eq. (4) that div(F 8) = 0. The optical
Earnshaw theorem is thus proved in considerable gen-
erality. In contrast to the electrostatic case, we do not
have curl(F 8) = 0, so some lines of the scattering force
may circulate within some volume. Such vortex be-
havior has been shown in the similar case of the
Poynting vector. 21 A trap, however, must have some
volume where the force is inward over its whole surface,
and this is impossible for the scattering force since
div(F,) = 0.

The major implication of the optical Earnshaw the-
orem and its corollary that gradient forces are necessary
for traps is that to produce deep traps one must maxi-
mize the gradient contributions to the force. Traps that
rely on maximizing the scattering forces to the neglect
of gradient forces are necessarily flawed, as we have
proven. The actual scattering-force traps of Minogen
and Javanainen were tuned 'YN12 below resonance for
cooling purposes. This introduces a small inward
gradient force, which for their geometry cannot com-
pensate for the gross instability that is due to the scat-
tering force in the unstable directions.

Finally, the traps based on maximizing the gradient
force""19'20 present the best prospects for experimen-
tally achieving all optical neutral-atom traps. For op-
tical powers of -1 W, trap depths -104 hYN are
achievable for sodium atoms, which confine atoms of

velocities 52 X 103 cm/sec. Optical traps are therefore
relatively shallow compared with ion traps. 22 However,
recent experiments on optical cooling of sodium atomic
beams using the scattering force23 have produced slow
atoms with velocity -4 X 103 cm/sec. Such slowing
techniques may thus ultimately provide a means of
filling atom traps. Cooling difficulties that are due to
a dynamic Stark shift remain for highly detuned gra-
dient traps. The suggested use of an additional
Stark-shift-canceling beam' 9' 20 is still a possible solution
to the cooling problem. However, as has been pointed
out,20 quantum heating can be reduced enough to give
a 1-sec retention time for cold atoms in such traps in the
absence of any cooling.
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