Bose-Einstein condensation

- Ideal Bose gas
- Weakly interacting homogenous Bose gas
- Inhomogeneous Bose gas
- Superfluid hydrodynamics

See thermodynamics textbooks

To remember:

- (1) Whether BEC occurs or not depends on density of states: Power law, depends on dimension and confinement
- (2) Even for interacting BEC, normal component is described as ideal gas $T_{\rm C}$
	- Condensate fraction

The shadow of a cloud of bosons as the temperature is decreased (Ballistic expansion for a fixed time-of-flight)

Temperature is linearly related to the rf frequency which controls the evaporation

Homogeneous BEC

Weability intracting Box gas at
$$
\tau=0
$$

\n $\hat{H} = \frac{1}{2V} \sum u_{q} a_{r+q}^{\dagger} a_{k-q}^{\dagger} a_{l} a_{p}$
\n $\begin{bmatrix} u_{q} = u_{q} & \text{if } u_{r+1} & u_{q} \end{bmatrix}$

 $\mathcal L$

Weability intracting Box gas at T=0
\n
$$
\hat{H} = \frac{1}{2V} \sum U_q a_{1+q} a_{1+q} a_2 a_p
$$

\n $\int U_q = U_q a_{1+q} a_2 a_p$
\n $\int U_q = \frac{4\pi \hbar^2}{m} a$ a scattering length
\n $a = \frac{C_{1}m}{\hbar} \left(-\frac{d_0}{\hbar} \right) = -4$
\n $\hat{H} = \frac{4\pi a \hbar^2}{m} \sum_{i \in \mathbf{d}} \delta (\tau_i \cdot \tau_{\mathbf{d}}) \cdot \frac{\partial}{\partial \tau_{\mathbf{d}} \cdot \mathbf{d}} \tau_{\mathbf{d}}$
\n $= 1 \text{ in Fig. odd}$

Homogeneous intervaling gas
\n
$$
H = \sum_{R} \epsilon_{R} a_{R}^{\dagger} a_{R} + \frac{u_{o}}{2v} \sum_{R,R',q} a_{R,q}^{\dagger} a_{R',q}^{\dagger}
$$
\n
$$
BEC \text{ in } R=0 \text{ state}
$$
\n
$$
a_{o}^{\dagger} |N_{o} \rangle = \frac{1}{N_{o}^{\dagger}} |N_{o}^{\dagger}|
$$
\n
$$
a_{o} |N_{o} \rangle = \frac{1}{N_{o}} |N_{o}^{\dagger}|
$$
\n
$$
N_{o} (avg_{c} |N_{o} = N_{o}^{\dagger} + 1 | Q_{o}^{\dagger} = 0)
$$
\n
$$
N_{o} (avg_{c} |N_{o} = N_{o}^{\dagger} + 1 | Q_{o}^{\dagger} = 0)
$$

Homogeneous interval in 995
\nH =
$$
\sum_{R} E_{R} a_{R} a_{R} + \frac{u_{o}}{2V} \sum_{R, R, q} a_{R+q} a_{R+q} a_{R+q}
$$

\nBEC in $R=0$ start
\n $a_{o} + |N_{o}\rangle$ = $\sqrt{N_{o} + 1} |N_{o} + 1\rangle$
\n $a_{o} |N_{o}\rangle$ = $\sqrt{N_{o}} |N_{o} - 1\rangle$
\n $N_{o} (arg_{c} |N_{o} = N_{o} + 1 | q_{o} = a_{o} + 1 |N_{o}$
\n(CBogoliubov)
\nH = $\frac{u_{o} N_{o}^{2}}{2V} + \sum_{R} E_{R} a_{R} a_{R} + \frac{u_{o} N_{o}}{2V} \sum_{R=0} a_{R} a_{R} + a_{R} a_{R} a_{R}$
\n+ $2 a_{R}^{+} a_{R} + 2 a_{R}^{+} a_{R}$

Homsyeneous interval in, gas
\nH =
$$
\sum_{k} \epsilon_{k} a_{k} a_{k} + \frac{u_{o}}{2v} \sum_{k} a_{k}^{+} a_{k}^{+}
$$
 a_k a_k
\n $8E_{c \text{ in }k=0 \text{ state}}$
\n $a_{o}^{+}|N_{o}>> \sqrt{n_{o}^{+}}|N_{o}^{+}|$
\n $a_{o} |N_{o}>> \sqrt{n_{o}^{+}}|N_{o}^{+}|$
\n $a_{o} |N_{o}>> \sqrt{n_{o}^{+}}|N_{o}^{+}|$
\n $N_{o} (arg_{c} N_{o} = N_{o}^{+} + 1 \quad Q_{o} = Q_{o}^{+} = \sqrt{n_{o}^{2}}$
\n $N_{o} (arg_{c} N_{o} = N_{o}^{+} + 1 \quad Q_{o} = Q_{o}^{+} = \sqrt{n_{o}^{2}}$
\n $1 + \frac{u_{o} N_{o}^{2}}{2v} + \sum_{k} \epsilon_{k} a_{k}^{+} a_{k} + \frac{u_{s} N_{o}}{2v} \sum_{k} a_{k}^{+} a_{k}^{+} a_{k}^{+} a_{k}^{+}$
\n $+ 2 a_{k}^{+} a_{k}^{+} 2 a_{-k}^{+} a_{-k}^{+}$
\n $1 + \frac{1}{2} a_{-k}^{+} a_{-k}^{+} a_{-k}^{+} a_{-k}^{+}$
\n $1 + \frac{1}{2} \sum_{k} a_{k}^{+} a_{k}^{+} a_{-k}^{+}$

 $H = \frac{u_0 N^2}{2V}$ + $\frac{1}{2} \sum (\varepsilon_{R} + \frac{Nu_0}{V}) (a_{R}^{\dagger} a_{R}^{\dagger} a_{R}^{\dagger} a_{R}) +$

$$
H = \frac{u_0 N^2}{2V} \rightarrow \frac{1}{2} \sum_{k=0} (E_{R} + \frac{N u_0}{V}) (a_{R}^{\dagger} a_{R} - a_{R}^{\dagger} a_{R})
$$

$$
\frac{N u_0}{V} (a_{R}^{\dagger} a_{-R}^{\dagger} - a_{R} a_{-R})
$$

 $Structute of H:$ $W_i + h \alpha = a_{h_i} b = a_{h_i}$ H has only terms of $x = E_0(a^T a - b^T b) + E_1(a^T b^T + ba)$ $U:+1$ $[0,0^1] - [6,6^1] - 1$

$$
H = \frac{u_0 N^2}{2V} \rightarrow \frac{1}{2} \sum_{k=0} (E_{k} + \frac{N u_0}{V}) (a_{k}^{\dagger} a_{k}^{\dagger} a_{k}^{\dagger} a_{k})
$$

$$
\frac{N u_0}{V} (a_{k}^{\dagger} a_{k}^{\dagger} a_{k}^{\dagger} a_{k} a_{k})
$$

 $Structute of H:$ $W_i + h$ $a = a_{n_i}$, $b = a_{n_i}$ H has only terms of $x = E_o(a^T a - b^T b) + E_i(a^T b^T + ba)$ $V_i + 1$ $[9, 9^1] - [6, 6^1] - 1$ bilinear expression Solved by Rogolinbor transforma $a = u q - v \beta^{t}$ $b = u \beta - v q^{t}$ $u^2 - v^2 = 1$ ensures $[\alpha, \alpha^+] = [\beta, \beta^+] = 1$ Canonical transformation

$$
H = \frac{u_0 N^2}{2V} \rightarrow \frac{1}{2} \sum_{k=0} (E_{k} + \frac{N u_0}{V}) (a_{k}^{\dagger} a_{k}^{\dagger} a_{k}^{\dagger} a_{k})
$$

$$
\frac{N u_0}{V} (a_{k}^{\dagger} a_{k}^{\dagger} a_{k}^{\dagger} a_{k} a_{k})
$$

 $Structute of H:$ $W_i + h$ $a = a_{n_i}$, $b = a_{n_i}$ H has only terms of $x = E_o(a^T a - b^T b) + E_i(a^T b^T + ba)$ $W_i + 1$ $[9, 9^1] - [6, 6^1] - 1$ bilinear expression Solved by Bogolinbor transforma $a = u_0 - v_0^t$ $b = u_0^0 - v_0^0$ $u^2 - v^2 = |$ ensures $[\alpha, \alpha^+] = [\beta, \beta^+] = 1$ Canonical transformation γ : () + () $(\alpha^{+}\gamma + \beta^{+}\beta)$ +()($\alpha\beta + \beta^{+}\gamma^{+}$) For choice of u.v = 0 d

H = λ ($\alpha^+ \alpha \rightarrow \beta^+ \beta$) + Const HO with quanta created by α^{+} , β^{+}

$$
H = \lambda (\alpha^{+}\alpha + \beta^{+}\beta) + \text{Conv}
$$

\nHO with quanta created by α^{+}, β^{+}
\n E lementary excitation
\n $H = \sum_{k} E_{k} \alpha_{k}^{+} \alpha_{k} + \text{Conv}$
\n $E_{k} = \sqrt{E_{k}^{2} + 2 E_{k} N U_{o}/V}$

$$
H = \lambda (a^{+}a + \beta^{+}\beta) + \text{const}
$$

\n
$$
H = \sum E_{h} a_{h}^{+} a_{h} + \text{const}
$$

\n
$$
H = \sum E_{h} a_{h}^{+} a_{h} + \text{const}
$$

\n
$$
E_{h} = \sqrt{E_{h}^{2} + 2 E_{h} M_{o}/V}
$$

\n
$$
E_{h} = \sqrt{\frac{(k^{2} - k^{2})^{2}}{2m} + (k - k)^{2}}
$$

\n
$$
= \sum_{h} k^{2}h^{2}/2m
$$

\n
$$
= \sum_{h} k^{2}/2m
$$

\n
$$
E_{h} = \frac{1}{2m} \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \sum_{h} k^{2}/2m
$$

\n
$$
E_{h} = \int \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n
$$
= \int \frac{1}{2m} \int_{0}^{2m} \frac{1}{2m} dm
$$

\n

Propagation of sound

Sound = propagating density perturbations

1.3 ms per frame

Lee, Huang, Yang

(M. Andrews, D.M. Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W.K., PRL 79, 549 (1997))

1957

Bogolinbou solution \neg E_R elementary excitation

10

íο

- Bogolinbou solution
- elementary excitation \rightarrow E_B
- a ground state energy $E_o = \frac{u_{o}h}{2} (1 + \frac{123}{15} \sqrt{n a^2/\pi})$

$$
Bogoliubov solution
$$
\n
$$
\Rightarrow E_{R} = elementary excitation
$$
\n
$$
E_{o} = \frac{u_{o}h}{2} \left(1 + \frac{123}{15} \sqrt{na^{3}/\pi} \right)
$$
\n
$$
\Rightarrow
$$
 ground state energy
\n
$$
c_{h} = \frac{v_{h}}{2} \left(1 + \frac{123}{15} \sqrt{na^{3}/\pi} \right)
$$
\n
$$
\Rightarrow
$$
 ground state wavefunction
\n
$$
c_{h} = \frac{v_{h}}{1 - v_{h}^{2}}
$$
\n
$$
c_{h} = \sqrt{1 - \frac{2}{3} \sqrt{na^{3}/\pi}}
$$
\n
$$
c_{h} = \sqrt{1 - \frac{2}{3} \sqrt{1 - \frac
$$

Quantum depletion or How to observe the transition from aquantum gas to a quantum liquid

In 1D: Zürich

K. Xu, Y. Liu, D.E. Miller, J.K. Chin, W. Setiawan, W.K., PRL 96, 180405 (2006).

What is the wavefunction of a condensate?

Ideal gas:

$$
\Psi = \big(\big| \, q = 0 \big| \big)^N
$$

Interacting gas:

\n
$$
H' = U_0 \delta(r)
$$
\n
$$
H' = U_0 \sum a_p^{\dagger} a_q^{\dagger} a_r a_s \qquad H' = U_0 a_0 a_0 \sum a_p^{\dagger} a_{-p}^{\dagger}
$$
\n
$$
\Psi = \left(\left| q = 0 \right| \right)^N + \alpha \left(\left| q = 0 \right| \right)^{N-2} \left| q = p \right| \left| q = -p \right| + \dots
$$
\nQuantum depletion

Quantum depletion in 3-dimensional free space

Quantum Depletion

$$
v_p^2 = \frac{T(p) + \mu - \sqrt{T^2(p) + 2\mu T(p)}}{2\sqrt{T^2(p) + 2\mu T(p)}}
$$

Free space Lattice

$$
T(p)=\frac{p^2}{2M}
$$

$$
\mu=\frac{4\pi\hbar^2a}{M}n=Mc_s^2
$$

$$
4J\sin^2(\frac{\lambda_L}{4\hbar}p)
$$

 n_0U

 J_{\cdot} : tunneling rate

: on-site interactionH

As one increases the depth of the optical lattice, the quantum depletion is dramatically increased

Finally, the condensate fraction becomes zero - ^a quantum phase transition to an insulator is taking place.

Dispersion relation

Elementary excitation
\n
$$
H = \sum_{n} E_{n} \alpha_{n} + \alpha_{n} + \text{const}
$$
\n
$$
E_{n} = \sqrt{E_{n}^{2} + 2 E_{n} N U_{o} / V}
$$
\n
$$
E_{n} = \sqrt{\frac{(k^{2}k^{2})^{2} + (k - k)^{2}}{2m}} = \sqrt{L_{o}N/V_{m}}
$$
\n
$$
= \sqrt{\frac{k}{2} \frac{k^{2}}{2m}} = \sqrt{\frac{k - k}{2} \frac{1}{2m}} = \frac{k - k}{2}
$$
\n
$$
E_{n} = \sqrt{\frac{k^{2}k^{2}}{2m}} = \frac{k - k}{2}
$$
\n
$$
E_{n} = \sqrt{\frac{k - k}{2}} = \frac{k - k}{2}
$$
\n
$$
B = 0
$$
\n
$$
B =
$$

Excitation Spectrum of a Bose-Einstein Condensate

J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson

Inhomogeneous BEC

-
-
-
-
-
-

A live condensate in the magnetic trap (seen by dark-ground imaging)

The inhomogeneous Bose gas łı New Feature: Trapping potential \equiv \rightarrow go to \vec{r} space $\hat{H} = \int d^{3}r \, \hat{u}^{+}(r) \left[-\frac{\hbar^{2}}{2r} \nabla^{2} + V_{traj} \right] \hat{L}(r)$ $+ \frac{1}{2} \int d^3x \int d^3r' \hat{r}^{\dagger}(r) \hat{r}^{\dagger}(r') \mu(r-r') \hat{r}^{\dagger}(r') \hat{r}^{\dagger}(r)$

The inhomogeneous Bose gas
\nNew Feature: Transforms Potential
\n
$$
\frac{1}{\sqrt{2}} \int d^3r \hat{u}^+(r) \left[-\frac{t^2}{2r} \nabla^2 + V_{trq}\right] \hat{u}(r) + \frac{1}{2} \int d^3r \hat{u}^+(r) \hat{u}^+(r) \hat{u}(r-r) \hat{u}(r) \hat{u}(r)
$$
\n
$$
+ \frac{1}{2} \int d^3r \int d^2r' \hat{u}^+(r) \hat{u}^+(r) \underbrace{u_0 \delta(r-r')}_{u_0 \delta(r-r')}
$$
\n
$$
\frac{u_0}{2} \int d^2r \hat{u}^+(r) \hat{u}^+(r) \hat{u}^+(r) \hat{u}(r)
$$

The inhomogeneous Bole gas
\nNew Feature: trapping potential
\n
$$
\Rightarrow 90 \text{ to } \vec{r} \text{ space}
$$
\n
$$
\hat{H} = \int d^3x \hat{i}^+(x) \left[-\frac{\hbar^2}{2m} \hat{v}^2 + V_{\text{trig}} \right] \hat{i}_+(r) + \frac{1}{2} \int d^3x \int d^2r' \hat{i}_+(r) \hat{i}_+(r') \underbrace{V_{\text{trig}}(r-r')}_{\text{trig}} \hat{i}_+(r) \hat{i}_+(r')
$$
\n
$$
\frac{U_0}{2} \int d^2x \hat{i}_+(r) \hat{i}_+(r) \hat{i}_+(r) \hat{i}_+(r) \hat{i}_+(r)
$$
\nHeisenberg equation of motion for \vec{r}
\n
$$
\vec{r} \frac{\partial \hat{i}_1(r,t)}{\partial t} = \int \vec{r}_1 \hat{i}_1 \hat{i}_1 \qquad \text{censat for the follow}
$$

Boqoliubov: Condeusate
$$
\rightarrow
$$
 C-number operator

\n
$$
\hat{u}(r,t) = 2r(r,1) + \tilde{u}(r,1)
$$

\n
$$
\hat{u}(r,t) = 2r(r,1) + \tilde{u}(r,1)
$$

\n
$$
\hat{u}(r,t) = \hat{u}(r,1) + \hat{u}(r,1)
$$

\n
$$
\hat{u}(r,t) = \hat{u}(r,1)
$$

Boqolin boy: Conder satr

\nOperating

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1) + 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\nIntegrals:

\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$
2\pi (r_1 + 1) = 2\pi (r_1 + 1)
$$
\n
$$

$$

 \mathbf{z}

Thomas Fermi approximation

\nThus,
$$
\frac{1}{2}
$$
 terms of the equation $\frac{1}{3}$.

\nTherefore, $\frac{1}{3}$ terms of the equation $\left(-\frac{k^2}{2} \sqrt{2^2} + V_{\text{ext}} + U_{\text{ex}} + U_{\text{ex}}$

rms width of harmonic oscillator ground state $7 \mu m$ \Rightarrow (repulsive) interactions \Rightarrow interesting many-body physics

Signatures of BEC: Anisotropic expansion

Vortices

$$
\Rightarrow NLSE_{1}^{C}Gross - Pitaevskii eqaarion for 24 (r_{1}r)
$$

it $\frac{32}{8t} = [-\frac{t^{2}}{2m} \nabla^{2} + V_{traj} + U_{e}N]2(r_{1}r_{1})^{2}] 2r(r_{1}r)$

$$
= \frac{n(r_{1}r)}{m \cdot r_{1}} \quad \text{density}
$$

$$
W_{e} \sum f(r_{1}) \rightarrow U_{e}n(r_{1}r)
$$

Spinning a Bose-Einstein condensate

The rotating bucket experiment with a superfluid gas 100,000 thinner than air

Rotating green laser beams

Two-component vortex Boulder, 1999 Single-component vortices Paris, 1999 Boulder, 2000 MIT 2001Oxford 2001

J. Abo-Shaeer, C. Raman, J.M. Vogels, W.Ketterle, Science, 4/20/2001

GPE for vortices

Order parameter

$$
\phi(\mathbf{r}) = \phi_v(r_\perp, z) \exp[i\kappa\varphi].
$$

GPE for modulus

$$
\left[-\frac{\hbar^2 \nabla^2}{2m} + \frac{\hbar^2 \kappa^2}{2mr_{\perp}^2} + \frac{m}{2} (\omega_{\perp}^2 r_{\perp}^2 + \omega_z^2 z^2) + g \phi_v^2(r_{\perp}, z) \right] \phi_v(r_{\perp}, z) = \mu \phi_v(r_{\perp}, z)
$$

F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. **71**, 463 (1999)

Hydrodynamics

$$
\frac{H_{1} dv_{0} d_{1}namic Flow of a superfluid}{GPE} = \frac{12}{2m} v^{2} + V(r) + U_{0} |2t|^{2} + \frac{24}{2} + \frac{34}{2} + \frac{54}{2} (2 + 02 + 02 + 02^{*}) = 0
$$

$$
\frac{H_{\gamma} \text{dvol}, \text{namic Flow of a superfluid}}{6P_{\gamma}^{E}} \left(-\frac{12}{2m} \sigma^{2} + V(r) + u_{o} |a|^{2}\right) \cdot 4 = \text{ch} \frac{0.2}{0.6}
$$
\n
$$
x^{2} + \text{Subtract C.c.}
$$
\n
$$
\frac{0.12}{0.6} + \nabla \frac{1}{2m} \left(2^{2} \cdot 0.4 - 2 \cdot 0.2^{2}\right) = 0
$$
\n
$$
\frac{0.2}{0.6} + \frac{0.2}{0.6} = \frac{2^{2} \cdot 0.2^{2} \cdot 0.2^{2}}{2 m \cdot 0.1^{2}}
$$

If
$$
y
$$
 do dy name f (low of a superfluid)

\nGF² = $\frac{12}{2m} \sqrt{3} + V(r) + U_0 |2r|^2 + \sqrt{2m}$

\n* $2\frac{x}{r}$ subtract C.c.

\n $\frac{\partial |2r|}{\partial t} + \sqrt{\frac{r}{2m}}$ $(2\frac{x}{r})^2 - 2\sqrt{2}^x = 0$

\n $\frac{\partial r}{\partial t} + \frac{\partial r}{\partial t} = \frac{2\frac{x}{r}\sqrt{2}-2\sqrt{2}^x}{2m(|2|^2)}$

\n $\frac{\partial r}{\partial t} + \sqrt{r} = \frac{2\frac{x}{r}\sqrt{2}-2\sqrt{2}^x}{2m(|2|^2)}$

\n $\frac{\partial r}{\partial t} + \sqrt{r} = \frac{2\frac{x}{r}\sqrt{2}-2\sqrt{2}^x}{2m(|2|^2)}$

$$
H_{\gamma}d_{\gamma}d_{\gamma}namic
$$
Flow of a superfluid
\n
$$
G_{\gamma}^{nc}
$$
\

insert $2f = Ae^{i\phi}$ into $NLSE_1$ separate real and in. parts $-\frac{1}{20} \frac{\partial \phi}{\partial t} = -\frac{\hbar^2}{2mL} v^2 + \frac{1}{2}mv^2 + V(r) + V_0 \frac{1}{4}c^2$ tan ∇ $m \frac{\partial v}{\partial t} = -\nabla \left(\delta \mu + \frac{1}{2} m v^2 \right)$ $\delta \mu = V + U_{on} - \frac{\hbar^{2}}{2m\pi n} V^{2}\sqrt{n} - \mu_{o}$ arb. Const $exact: \delta_M = 0 \Leftrightarrow \text{ time in dep. } GPE \text{ equation}$

insert 21 = & e^{ip} into NLSE, separate real and in. parts $-\frac{1}{20} \frac{\partial \phi}{\partial t} = -\frac{\hbar^2}{2mL} v^2 + \frac{1}{2}mv^2 + V(r) + V_0 \frac{1}{4}c^2$ tan ∇ $m \frac{\partial v}{\partial t} = -\nabla \left(\delta \mu + \frac{1}{2} m v^2 \right)$ $\delta \mu = V + U_{oh} - \frac{\hbar^{2}}{2m\hbar} \vec{v} + \vec{h} - \mu_{o}$ arb. Const $exact: \delta_{\mu=0} \cong tineine, GPE equations$ Now: Thomas Fermi approx. neglect Q4 (density devivative) but not PQ $n = n_0 + \delta n$ where $n_0 u_0 + v = \mu_0$ $\delta \mu$ = $U_o \delta n$ eliminate op, neglect v² (highworder) $m \frac{\partial u}{\partial t} = -\nabla (u_{o} \cdot \delta_{h})$ | * ho, ∇

$$
m \nabla (n_{o} \frac{\partial \Psi}{\partial t}) = -U_{o} \nabla (n_{o} (\nabla \delta n))
$$
\n
$$
\frac{\partial \delta n}{\partial t} + \nabla (n_{o} \Psi) = 0
$$
\n
$$
m \frac{\partial^{2} \delta n}{\partial t^{2}} = U_{o} \nabla (n_{o} \nabla \delta n)
$$
\nFor n_{o} = const. Wave equation for δn
\n
$$
V_{e} = \sqrt{U_{o} / n}
$$
 Bogolialsv

• TF solution for no
=> discrete modes, e^{tima} m angular mon $e.g. w = \sqrt{2} w_{\text{true}}$ - Shape Oscillations of
the cloud

Collective excitations (observed in ballistic expansion)

MIT, 1996

Shape oscillations

"Non-destructive" observation of a time-dependent wave function

5 milliseconds per frame

m=0 quadrupole-type oscillation at 29 Hz

Stamper-Kurn, Miesner, Inouye, Andrews, W.K, PRL **81**, 500 (1998)

Optical Lattices
Superfluid to Mott Insulator Transition

Optical (a+1)ce (cubic)
\n
$$
V(k, y, z) = V_0
$$
 (sin²kx + sin²ky + sin²ke)
\nQM in periodic potentials (1D)
\n $I + \frac{k}{2m} V^2 - V_0 \sin^2(kx)$
\n $2r q_1 n = e^{iqx/k} u_{q_1 n}(x)$ Block theorem
\nQuasi momentum

Superfluid to Mott Insulator Transition. Optical Cattice (cubic)
V(x, y, z) = Vo (sin kx + sin ky + sin kz) QM in periodic potentials (ID) $H = \frac{k^{2}}{2m} \nabla^{2} - V_{o} sin^{2}(k+1)$ $2t_{q,n} = e^{iqx/k} u_{q,n}(x)$ Bloch theorem Quasi moment. Periodic Fourfer expansion $\sum_{\varrho} c_{\varrho}^{q, n} e^{i2\varrho k x}$ $- V_0 \sin^2(kx) = \sum \tilde{V}_r e^{i2rkt}$ $\tilde{V}_{-1} = \tilde{V}_{1} = V_{0}/4$ Insert into H⁷ que Eq, n 2 que $\widetilde{V}_{0} = -V_{0}/2$

Superfluid to Mott Insulator Transition Optical Cattice (cubic)
V(x, y, z) = Vo (sin kx + sin ky + sin kz) QM in periodic potentials (ID) $H = \frac{k^{2}}{2m} \nabla^{2} - V_{0} \sin^{2}(kx)$ $u_{q,n} = e^{iqx/n} u_{q,n}(x)$ Bloch theorem Quasi moment periodic $-\sqrt{s}$ sin $(hx) = \frac{\sqrt{t}}{t}e^{i2\pi h t}$
 $=\sqrt{s}c^{a,n}_{l}e^{i2\pi h t}$
 $=\sqrt{c^{a,n}_{l}}e^{i2\pi h x}$ Fourfer expansion Insert into H⁷ que Eq, n² q, n $V_{p} = -V_{p}/2$ $\sum_{a,b} e^{i (q+2a^b)^2} \left[\left(\frac{a+2a^b+b}{2m} \right)^2 - \sum_{a,b} \left(\frac{a}{e^a} + \sum_{a} \sqrt{c^a_{a^b} + c^a_{a^b} + c^a_{a$ Set of linear equations

 $V = 3E$ $V = 0$ $V - qB$ $\sum_{i=1}^{n}$ $\overline{4}$ $\mathbf 3$ $\mathcal{E}_{\eta_\epsilon}$ 9 \overline{c} 十九 $\overline{}$ \mathbf{h} $\sum_{i=1}^{n}$

ع

 $V = 3E$ $V = 0$ $V - q$ E_T M て $\overline{2}$ +λ $\frac{V_{o}}{E_{r}}$ E_r = $\frac{k}{2}$ tight binding case $>$ => harm. confinement $\pi v_0 = 2 E_r (v_0/E_r)^{1/2}$ at each lattice site

V=0
\n
$$
u=3e
$$
 $v=9e$
\n $u=4$
\n1
\n2
\n $\epsilon_{n,q}$
\n

Wannier Functions (orthogonal basis set) $W_n(x-x_{\underline{\delta}}) = \mathcal{N}^{-1/2} \sum_{n \text{ normal}} \mathcal{L} e^{iqx_{\underline{\delta}}} 2_{t_{\underline{q}}_n}(x)$

Wannier Functions (orthogonal basis set) $W_n(x-x_i)$ = $\mathcal{N}^{(1)}$ $\sum e^{iqx_i} u_i$
 (1) Site Cization

 $J = \int w_i (x-x_i) \left[\frac{h^2}{2m} \nabla^2 + V(x) \right] w_i (x-x_e)$ tunneling from I tunneling energy $3/t$ "tunneling rate"

3

Wannier Functions (orthogonal basis
$$
Set
$$
)

\n
$$
W_n(x - x_i) = N^{(1)} \sum_{n \text{prime}} \frac{\log n!\, \text{totalized}}{\log n} (x)
$$

\nSite $Given$

$$
J = \int w_1 (x - x_{\hat{g}}) \left[\frac{\underline{h}^2}{2m} \nabla^2 + V(x) \right] w_1 (x - x_e)
$$

\n
$$
+ \lim_{s \to \infty} \lim_{\hat{g} \to 0} \frac{1}{s}
$$

\n
$$
J' + \lim_{s \to \infty} \lim_{\hat{g} \to 0} \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s}
$$

\n
$$
J' + \lim_{s \to \infty} \lim_{\hat{g} \to 0} \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s}
$$

\n
$$
J' + \lim_{s \to \infty} \lim_{\hat{g} \to 0} \frac{1}{s} \cdot \frac{1}{
$$

Now: Interactions $U(x) = \frac{4\pi k^2 a_s}{m} \delta(x)$ Mean Field interactions $u = 3 \int [w(x)]^4 d^3x = \sqrt{\frac{8}{\pi}} k a_s E_r \left(\frac{V_0}{E_r}\right)^{3/4}$

tight binding On-site interactions: $H_{F_{u,u}} = \int d^{3}x \; 2^{+}(x) \left(\frac{p^{2}}{2m} + V(x) \right) 2r(x)$ $+ 2 (1^3 \times 2^+(x) 2^+(x) 2(x) 2^+(x))$

Now: Interactions $U(x) = \frac{4\pi k^2 a_s}{h} \delta(x)$ Mean Field interactions $U = 3 \int [w(x)]^4 d^3x = \sqrt{\frac{2}{\pi}} k a_s E_r \left[\frac{V_0}{E_r} \right]^{3/4}$
+ j t binding On-site interactions: H_{full} = $d^{3}x^{2}$ + $(x)(\frac{p}{2m}+V(x))^{2}$ (x) + $\frac{9}{2}$ $\int L^{3}x^{2}t^{+}(x)2t^{+}(x)2(x)2t(x)$ Wannier Functions $\hat{z}_{t}(x) = \sum \hat{k}_{i} w_{i}(x-x_{i})$ Assume: only lowest band occupied => HFull = = $\sum_{i,j} J_{i,j} k_{i}^{+} k_{j}$ + $\frac{1}{2} \sum_{i,j,k} U_{i,j,k,k} k_{i}^{+} k_{j}^{+} k_{k} k_{k}$

$$
\int_{\lambda_{\hat{Q}}} = \int dx \, \mathcal{W}_1(\kappa - \kappa_{\hat{c}}) \left(\frac{\rho^2}{2m} + V(\kappa) \right) \mathcal{W}_1(\kappa - \kappa_{\hat{d}})
$$

$$
U_{\hat{c},\hat{q},\hat{q},\hat{q}} = \frac{1}{2} \int dx \, \mathcal{W}(\kappa - \kappa_{\hat{c}}) \, \mathcal{W}(\kappa - \kappa_{\hat{q}}) \, \mathcal{W}(\kappa - \kappa_{\hat{q}}) \mathcal{W}(\kappa - \kappa_{\hat{q}})
$$

Ś.

$$
J_{\lambda_{\hat{A}}} = \int dx \, N_{1}(\kappa - x_{\hat{c}}) \left(\frac{p^{2}}{2m} + V(\kappa) \right) N_{1}(\kappa - x_{\hat{d}})
$$

\n
$$
U_{\lambda_{\hat{A}}} = 3 \int dx N(\kappa - \kappa_{\hat{c}}) N(\kappa - \kappa_{\hat{d}}) N(\kappa - \kappa_{\hat{d}}) N(\kappa - \kappa_{\hat{d}})
$$

\n
$$
H \, \kappa_{\hat{A}} = 3 \int dx N(\kappa - \kappa_{\hat{c}}) N(\kappa - \kappa_{\hat{d}}) N(\kappa - \kappa_{\hat{d}})
$$

\n
$$
H \, \kappa_{\hat{A}} = 0 \qquad \text{nearcs} + \text{ne } 0 \qquad \text{on} \, \, \kappa_{\hat{d}} + 0
$$

\n
$$
U = U_{\lambda_{\hat{A}}} \, \text{for} \, \, \kappa_{\hat{A}} = 0 \qquad \text{on} \, \, \kappa_{\hat{d}} + 0
$$

S

$$
\int_{\lambda_{\hat{A}}} \cdot \int dx \, M_{1}(x-x_{\hat{c}}) \left(\frac{\rho^{2}}{2m}+V(x)\right) M_{1}(x-x_{\hat{d}})
$$
\n
$$
\int_{\lambda_{\hat{A}}} \cdot \int_{\lambda_{\hat{B}}} \cdot
$$

Two Cimiting cases: integer filling ñ $U > J$ ground state $|2_{\uparrow\uparrow\uparrow\uparrow}\rangle$ (1=0, \overline{n}) = \prod_{ℓ} ($|\overline{n}\rangle_{\ell}$) Two Cimiting cases: integer filling ñ $U > J$ ground state $|2t_{ML}\rangle$ (1=0, \overline{n}) = \overline{L} ($|\overline{n}\rangle_{\ell}$) J >>4 cdeal REC, all Natoms in \vec{q} =0 Rloch state $|u_{s_{r,n}}\rangle$ $(u=0)$ = $\left(\frac{1}{\sqrt{n}}\sum_{n=1}^{n}k_{r}^{+}\right)^{n}|0\rangle$ M Sites

Two Cimiting cases: integer filling \bar{n} $U \gg 1$ ground state $|2t_{ML}\rangle$ (1=0, \overline{n}) = \overline{L} ($\overline{ln}\rangle_{\ell}$) J >>4 cdeal REC, all Natoms in \vec{q} =0 Rloch state $|2t_{s_{F,N}}\rangle$ $(u=0)$ = $\left(\frac{1}{\sqrt{n}}\sum_{n=1}^{n}k_{\ell}^{+}\right)^{n}|0\rangle$ M Sites

Note: Bogoliubov approximation $a_s = a_s^+ = \sqrt{N}$ does not capture the transition to insulating state Interactions are treated only approximately Valid only for small depletion N-No

Two Cimiting cases: integer Filling \bar{n} $U \gg 1$ ground state $|2t_{ML}\rangle$ (1=0, $\overline{n}| = \prod_{\emptyset} (\overline{n}\rangle_{\rho})$ J >>4 cdeal REC, all Natoms in q=0 Rloch state $|2t_{s_{F,N}}\rangle$ $(u=0)$ = $(\frac{1}{\sqrt{n}}\sum_{n=1}^{n}k_{\ell}^{+})^{\prime}(0)$ M sites

Note: Bogoliubov approximation $a_s = a_s^+ = \sqrt{N}$ does not capture the transition to insulating state Interactions are treated only approximately Valid only for small depletion N-No

Goal: Find effective Ohsite Hamiltonian by Mean-Field decoupling van Osten, van der Straten, Store PRA 63
 $\hat{A} \hat{B} = (A3 + \Delta \hat{A}) (28 + \Delta \hat{B}) \approx 5.3601(2001)^{1}$ $=$ <A> \hat{B} + \hat{A} -<A>

 \rightarrow Coupling between sites: tunneling Jb2 be $k_{a}^{+} k_{a} \approx \langle k_{a}^{+} \rangle k_{a}^{+} + k_{a}^{+} \langle k_{a}^{+} \rangle - \langle k_{a}^{+} \rangle \langle k_{a}^{+} \rangle$

Coupling between sites: tunneling Jbetber $k_{\ell}^{+} k_{\ell} \approx \langle k_{\ell}^{+} \rangle k_{\ell}^{+} + k_{\ell}^{+} \langle k_{\ell}^{+} \rangle - \langle k_{\ell}^{+} \rangle \langle k_{\ell}^{+} \rangle$ SF order parameter $2f = \sqrt{n_g} = \langle k_g \rangle = \langle k_g \rangle$

Combining between sites: tunneling
$$
\int k_{\ell}^{+} k_{\ell}
$$

\n
$$
k_{\ell}^{-} k_{\ell} \leq k_{\ell}^{+} > k_{\ell} \leq k_{\ell} \leq k_{\ell} \leq k_{\ell} \leq k_{\ell} \leq k_{\ell} \leq k_{\ell}
$$
\nSF order parameter $2_{\ell} = \sqrt{n_{\ell}} = \langle k_{\ell}^{+} \rangle = \langle k_{\ell} \rangle$

\n
$$
\pm \text{ for nearest neighbors}
$$
\n
$$
k_{\ell} = -2 \int 4 \left[k_{\ell}^{+} + k_{\ell} \right] + 2 \int_{\frac{\text{tr of } \ell}{\text{stras}}}^{1/2} \left(k_{\ell}^{+} + \frac{U}{2} \sum n_{\ell} (n_{\ell}^{-1}) \right)
$$

Corolling between sites: tunneling
$$
\int b_x^+ b_x
$$

\n $b_x^+ b_x \approx < b_x^+ > b_x^+ < b_x^+ < b_x^+ > > < b_x^+ > b_x^- > > b_x^- > b$

Coupling between sites: tunneling Jbetber $k_{\ell}^{+} k_{\ell} \approx \langle k_{\ell}^{+} \rangle k_{\ell}^{+} + k_{\ell}^{+} \langle k_{\ell} \rangle - \langle k_{\ell}^{+} \rangle \langle k_{\ell} \rangle$ SF order parameter $2 - \sqrt{n_e} = 5.5 - 5.5$ 2 # of nearest neighbors Hell = - 2 $J^2 + \frac{[(k_2^+ + k_2^+)] + 2 J^2 + 2 k_1^2 + 4 k_2^2]}{k_1^2 + 2 k_2^2 + 4 k_1^2} = \frac{M^2}{2} \sum_{k=1}^{2} n_k (n_k - i)$ $sitex - \mu \sum n_{\ell}$ $H_{ell} = 2J\sum H_{ell,1}$ $\overline{u} = u/z \overline{v} = m^{2}/2J$ $H_{ell, l} = \frac{1}{2} \overline{u} n_{l} (n_{l} - 1) - \overline{\mu} n_{l} - 2t (k_{l}^{+} + k_{l}) + 2t^{2}$ = $H^{(0)} + 4V$ with $V = -(b_t^+ + b_0)$ $H^{(0)} = \frac{1}{2} \overline{u} \hat{n} (\hat{n}-1) - \overline{\mu} \hat{n} + 4^2$ diagonal in \hat{n}

ground state for It¹⁰⁾ 14 $\overline{u}(\dot{\gamma}I) < \overline{\mu} < \overline{u} \dot{\gamma}$
=> $E_{\dot{\gamma}}^{(0)} = \frac{1}{2} \overline{u} \dot{\gamma}(\dot{\gamma}I) - \overline{\mu} \dot{\gamma}$

8 Occupation #

8

$$
3 \text{Normal state for } H^{(o)} \text{ as } \frac{1}{2} \pi \le \overline{u} \le \overline{u}
$$
\n
$$
1 \text{ if } \overline{u}(\overline{g}^{-1}) \le \overline{\mu} \le \overline{u} \le \overline{u}
$$
\n
$$
2 \text{ Using the following equation}
$$
\n
$$
2 \text{ Using the following equation}
$$
\n
$$
V: \text{Couple's } \Delta h = \pm 1
$$
\n
$$
\frac{1}{2} \text{Second out permutation theory}
$$
\n
$$
E_{\mathbf{d}}^{(2)} = 2 \sqrt[2]{ \sum_{n \neq \overline{d}} \frac{|\langle \overline{g} | V(n) |^2}{E_{\mathbf{d}}^{(o)}}}
$$
\n
$$
= \frac{3}{\overline{u}(\overline{g}^{-1}) - \overline{\mu}} + \frac{\overline{g}^{+1}}{\overline{\mu} - \overline{u}} \frac{1}{\overline{g}}
$$

 $\boldsymbol{\mathcal{g}}$

Phase transition

Landan Formalism:

۹

Phase transition

Landan Formalism:

 $E_{q}(4) = a_{0} + a_{2}t^{2} + \sigma(2t^{4})$ >O, see 4th order
Perturbation theory ϵ ₃ $a₂$ a, c Phase transition for $a_2 = 0$ $a_2 = \frac{\Delta}{\overline{u}(\overline{i}-1) - \overline{\mu}} + \frac{\overline{i}+1}{\overline{n}-\overline{u}i} + 1 = 0$ $\overline{M}_{\pm} = \frac{1}{2} [\overline{U}(2j+1) - 1] \pm \frac{1}{2} \sqrt{\overline{U}^2 - 2\overline{U}(2j+1) + 1}$

 $114 - 3$ Insulator $=2$ $\dot{\lambda}$? | $\frac{2}{2}$ $=$

 ∞

 ∞

Courtesy Markus Greiner

Other exp: Mainz, Zurich, NIST Gaithersburg, Innsbruck, MPQ and others

The Superfluid-Mott Insulator transition

Shallow Lattices - Superfluid

$$
|\Psi_{SF}\rangle\propto\left(\sum_{i=1}^M\hat{a}_i^\dagger\right)^N|0\rangle
$$

 9 Erec 5 Erec

The Superfluid-Mott Insulator transition

Deep Lattices – Mott Insulator

As the lattice depth is increased, J decreases exponentially, and U increases. For J/U<<1, number fluctuations are suppressed, and the atoms are localized

Nanokelvin atoms are a new toolbox to address fundamental questions of many-body physics

Quantum simulations of strongly correlated, strongly interacting systems