O

APPENDIX

QUANTUM ELECTRODYNAMICS IN THE COULOMB
GAUGE—SUMMARY OF THE ESSENTIAL RESULTS

This appendix briefly summarizes the procedure for quantizing the
electromagnetic field in the Coulomb gauge and gathers together the
essential formulas that are used in this volume (*). ,

The system studied in electrodynamics is composed of two interacting
subsystems: the electromagnetic field on the one hand, and an ensemble of
charged particles on the other. Quantum electrodynamics attempts to
describe, within the framework of quantum mechanics, the states and the
dynamics of these two subsystems whose evolutions are coupled. The
charged particles are actually the sources of the field and the field exerts
forces on the particles.

We first introduce the variables used to describe the field (§1) and the
particles (§2) in classical and quantum theories. Then we introduce the
Coulomb-gauge Hamiltonian which governs the dynamics of the global
system (§3). We then review a few important quantum states of the field
(§4), and last we introduce the electric dipole representation currently
used to describe localized systems of charges such as atoms or molecules

(85).
1. Description of the Electromagnetic Field

a) ELectric FIeLp E anD MaGNETIC FiELD B

In classical electrodynamics, the fields E(r,¢) and B(r,t) obey the
Maxwell equations

V-E(r0) = —p(r,0) (1)

V- B(r,t) = 00 (1.b)

V X E(r,t) = —%B(r,t) (1)

V X B(r,t) = izf—E(r,t) + —lij(r,t) (1.d)
c2 ot £oC

(® It is, of course, impossible to discuss in a short appendix all the aspects of the
quantization of the electromagnetic field or to prove all the results cited here. The reader can
refer to Photons and Atoms—Introduction to Quantum Electrodynamics for a more detailed
presentation,
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where the charge density p(r,¢) and current density j(r,t) are those
associated with the particles. After a spatial Fourier transformation, the
Maxwell equations become (*)

ik-&(k,t) = ;l—p(k,t) (2.a)
ik - @(k,t) =0 (2.b)
ik X &(k,t) = — %Q(k, t) (2)

) 1 9&(k,t) 1
ik X#&(k,t) = =% + socz,'(k,t) (2.d)

where E(r, t) and &(k, ¢), for example, are related by:

1 3 ik'r
E(r,t) = W/d k&(k,t)e™". (3)

The two equations (2.a) and (2.b) fix the longitudinal parts &, and %, of
the electric and magnetic fields, i.e., the projections onto k/k of &
and #:

& (k,t) = - E:):zp(k,t) (4.2)
#(k,t) =0 (4.b)
In real space, these relations become
E(r,1) = nid [ o(r, :)v,—-l— (5.2)
4me, fr—r|
By(r,t) = 0. (5.b)

The magnetic field is purely transverse, whereas the longitudinal electric
field coincides with the Coulomb field associated with the distribution of
charge p(r, t) at the same time. The longitudinal fields are thus not really

(*) We systematically use the following notation: a scalar or vectorial field in real space is
written with a Roman letter, whereas its spatial Fourier transform is designated by the same
cursive or italic letter.

)
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independent variables for the field. They are either zero, or they can be
expressed through p as a function of the particle variables. By contrast,
the transverse fields &, and &, =%, which are the projections of & and
& in the plane perpendicular to k, are independent variables whose
equations of motion can be deduced from (2.c) and (2.d)

J
E;Q(k, t) = —ikx &, (k, t) (6.a)
] 1
—&, (k1) = clik xB(k,t) — =, (k). (6.b)
dat €9
b) VECTOR POTENTIAL A AND SCALAR PotenTiaL U

In quantum theory, it is necessary to consider the potentials A and U
related to the fields E and B by the equations

dA(r,t
E(r,t) = =VU(r,t) — (Bt ) (7.a)
B(r,t) = V X A(r,?) (7.b)

which, in reciprocal space, become
o (k,t)

R Z(k,t) = —ik#(k,t) - 7 (8.a)

g !
o F(k, 1) =ik X H(k,1). (8.b)

The fields E and B are invariant in the gauge transformation associated
with the function F(r,t)

A(r,t) = A(r,t) = A(r,t) + VF(r,t) (9.2)
Ur, 1) = U'(r,t) = U(r, ) — aF(;t") (9.b)
which can also be written
2(k,t) > ' (k,t) =o(k,t) + ikF(k,t) (10.a)
07 (k,t)
#(k,t) — 7'(k,t) = 7(k,t) — T— (10.b)

It is clear from Equations (10) that only & and % change in a gauge
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transformation, whereas & , is gauge invariant
o (kt)=o, (k,t). (11)

Equations (8) prove also that the transverse fields &, and & depend only
on &,

2 (k)= - %.vl (k, 1) (12.2)
Z(k 1) = ik X, (k,1). (12.b)

¢) CouLomMB GAUGE

The Coulomb gauge (V - A = 0) corresponds to the choice
o (k,t) =0= Ay(r,1). (13)

By comparing the longitudinal part of (8.a) with (4.2), we then obtain

%7(k, t) = k,t 14
(1) = (k) (14)
or, equivalently,
p(l",t)
1) = ¥ ——r-
u(r, 1) 4w€0fdr P (15)

In the Coulomb gauge, the longitudinal vector potential is zero and the
scalar potential coincides with the Coulomb potential associated with the
charge distribution p(r,t) at the same time. Therefore, in this gauge
the independent variables of the field are the transverse vector potential
o, (k, ) and its velocity &, (k, 1) = —&, (k, 1).

d) NORMAL VARIABLES

The simple form for the equations of motion (6) of the transverse fields
suggests the introduction of the .following linear combination of & and
&, [or, using (12), of &, and & ]

a(k,t) = /\(k)[gl (k,t) — c% XQ(k,t)]

= MK =, (K, 8) + iwst | (K, 1) (16)
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where A(k) is a normalization constant that we will later on take to be
equal to —i‘/eo/Zhw. The evolution equation for « is then quite simple:

d(k, t) + iwa(k, t) = —ﬁ—i———fz'jl (k, l). (17)
A €

In the absence of sources (j , = 0), the variables a(k, t) corresponding to
the different possible values for k evolve independently of each other, with
a time dependence exp(—iwt) where o = ck. The variables a thus
describe the normal modes of vibration of the free field and are for this
reason called normal variables.

Equation (16) shows that a is, like &, and &, a transverse field. For
each value of k, we can introduce two unitary vectors € and €, orthogonal
to each other and both perpendicular to k. Each ensemble k, € defines a
normal vibrational mode of the field and the normal variable associated
with this mode '

a (k) = ¢ - a(k) (18.a)

obeys, according to (17), the evolution equation
i
i (k, 1) + iwa, (k1) = =——=¢ 4(k ). 18.b
(k1) +iwa (k1) = = 400 (18D)

By using the reality conditions for the fieldsE , ,B,and A , which, for
example, for E | are written

g, (kt) =&* (-k,t), (19)

we can invert Equations (16) and express &, (k, 1), Fk, 1), and &, (k,t)
as a function of a,(k,t) and a¥(—k,t). A Fourier transformation then
gives the expansions of the various transverse fields as functions of the
normal variables. Later on, these expansions are written directly as a
function of the operators a,(k) and a; (k) which are associated, in quan-
tum theory, with the normal variables a (k) and af (k). The set of degrees
of freedom associated with the transverse field is usually designated as
«radiation”. The state of the radiation is thus defined at time ¢ by the
given normal variables a,(k, t) for ail k and all e.

¢) PrincIPLE OF CANONICAL QuanTIZATION IN THE COULOMB GAUGE

The canonical quantization procedure requires pairs of conjugated
dynamical variables to be identified, which, after quantization, become
operators whose commutators equal ih.



626 Appendix App. 1

For the electromagnetic field, we can introduce a Lagrangian which
contains only the really independent variables of the field (&, and &)
and the variables of the particles (standard Lagrangian in the Coulomb
gauge) and which leads to the Maxwell equations for the field and to the
Newton-Lorentz equations for the particles. With regard to this La-
grangian, the conjugate moment of the generalized coordinate &,(k) is
found to be equal to (k) = &,,(k) and the canonical commutation
relations are written

[#.(K), 7 (K)] = ihd,,8(k — K). (20.2)

The operator a,(k) associated with the normal variable a (k) is expressed
as a function of the operators &,(k) and (k) = eoy (k) by an equation
analogous to (16). By choosing an approprlate normalization constant A(k)
[ACk) = —i‘/eo/Zhw ], we then find that relation (20.a) is equivalent to

[as(k)’ a:'.(k')] = 8:5'6(k - k’) (20b)

with all the other commutators being zero.

To follow the quantum electrodynamic calculations presented in this
book, it is sufficient to know the commutation relations (20.b) and the
expressions for the physical variables as a function of the operators a and
a™ which are discussed in the next subsection.

f) QuantuMm FieLbs IN THE CouLomB GAUGE

As we explained above, it is possible to invert Equations (16) between
operators and to use the Hermiticity conditions of these operators to
obtain, by Fourier transformation, the expansions of the field operators in

a, and a;. We find in this way that
AL(r) = [ &%k Lo, [ea,(k) e + ea} (k) e~ ] (21)
E,(r) = fd’k Y&, [ea, (k) e " — ea) (k) e~ "] (22)

B(r) = [ &’k Li®,[(x X €)a,(k) e™™ — (k X e)a; (k) e~*""]

»,

(23)

e ettt ki e L

[P S —

e,
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where
w=ck (24.a)
k= k/k (24.b)
31172

o, = [#/2600(2m)’] g =ws, B,=&/c (24c)

The total electric field E(r) is written
E(r) =E, (r) + E(r) (24.9)

where E (r) is given in (5.a).

It is often convenient to consider the field as being contained in a cubic
box with periodic boundary conditions. The dimension L of this box is
taken as being large compared with all the characteristic dimensions of the
problem under consideration. The components of the wave vectors are
then multiples of 27/L and the modes form a discrete ensemble desig-
nated by the subscript j. The Fourier integrals are replaced by series
following the rule

273
[ @k Litke) @ T ) 1tkyey). )
£ J
The creation and annihilation operators are redefined by
L \32
a; = (ﬁ) jq_ d*ka, (k) (26)

where C; is the elementary cell of volume (27/L)’ about k;. The a; and
aj+ satisfy the simple commutation relation

[a:,a]] = 8 (27)
The fields are expressed as a function of the a; in the form
h ik;r + —ik; T
A (r)—E L3[aeel +ajfe e ] (28)
E,(r) = Zt > L3 [a eki'r — aj*eje“'"i"] (29)
B(r) = Z-l- iaad BN [a.w X g; elr —-aj K X g; ek I'] (30)
; c 2£0L3 I f)
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Last, to finish this subsection, we give several useful formulas. In the
bilinear expressions with respect to the fields, the following sums involving
the Cartesian. components of the transverse polarization vectors € and ¢,

perpendicular to k are often encountered:

Ze,em = 8,y — KiKp, (31)

ki ‘
ZEI(K X E)m = Zelmnxn (32)
T Y (kX €)(k X€), =8, — KK,, (33)

where l and m =x, y, 2, e,,,, is the antisymmetric tensor, and where « is
defined in (24.b). Expression (31) represents, in reciprocal space, the
projector onto the subspace of transverse fields. In real space, this projec-
tor is represented by the transverse delta function

6l-an (l' - l") = (2_"_)3fd3k eik'(r—r’)(alm - KIKm)
2 Y(Ir —r'])
= —8, & -+ —
3 im (l‘ l‘) 47,_'[__ l_,|5

! ! ’ 2
X[3(r = i) (rm = i) = (r = )8, (39)
where Y(Ir — r'|) is a regularization function equal to 1 everywhere except
inside a small sphere around |r — r'| = 0, where it tends to zero. Finally,
from (27)-(29), we obtain the following commutation relations for the
fields in real space:

[A.(r), A, ()] =0 [EL(r),E n(r')] =0 (35.2)
[A.i(r), E ()] = _e—:ffszfn(r - r). (35.b)

2. Particles

Particles are described within a nonrelativistic framework: their velocity
is assumed to be small compared with ¢, and their number is invariant. In
this limit, we can describe each particle « by the conjugate variables r,
(position) and p, (momentum), rather than using a field theory. In
quantum theory these variables become observables obeying the canonical
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commutation relations
(36)

In the presence of the vector potential, the velocity v, of the particle is

[rou', ppj] = ihaaﬂaij'

related to p, by

m ava =

pa - qu 1 (ra) (37)
(m, and g, are, respectively, the mass and the charge of the partic}c a).
The charge density and the current density are expressed as a function of .
the preceding variables

p(r) = Lg,8(r —r,) (38.2)
i(r) = La.%8(r — r,). (38.0)

We will also use their spatial Fourier transforms
: P = T S (39.2)
S0 = Lo Esm e (395)

3. Hamiltonian and Dynamics in the Coulomb Gauge
a) HAMILTONIAN

The Hamiltonian H describing the dynamics of the system formed by
the transverse field and the particles can be written as

1
zma [pa - qu.L (ra)]z +

H=X

q
—g,——|S, - B(r,) + Veouw + Hg-
+§( ga2ma) a (ra) Coul R

(40)

The first term of H is the kinetic energy of the particles [see expression
(37) for the velocity]. ' .

The second term represents the interaction energy of the spin magnetic
moments possibly carried by the particies (g, is the g factor for the
particle a) with the magnetic field B(r,).
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The third term, V,,, is the energy of the longitudinal field (Coulomb
energy)

_ %o 3 _ & 2
Veor = 7 [ &rE}(r) = 0 [ & |&,(w)| (41)
which, using (4.a) and (39.a), equals

1 p* (K)p(k) 1 9.9
Vo = 5— [k = Yea + %
Coul Zsof k? );'EC“' 8me, agﬁ Ir, — rgl

(42)

€Cou is the Coulomb self-energy of particle «, which is expressed in
reciprocal space in the form of a divergent integral, unless a cutoff k, is
introduced

2 3 2
q? d’k az qZk
8(! u = ——— = cdk = a’”vc .
Coul 25(,[ (2-,-,-)3](2 45072/(; deymr? (43)

The fourth term of H represents the energy of the transverse field
€
Hy= > [ &r[E% (r) + c?B(r))] (44)

which, using expressions (29) and (30) for E, and B, can be put in the
form

Hp = Lhoata; + 7). (45)

In the presence of external fields described by the potentials A (r, ¢) and
U,(r, t), the Hamiltonian (40) must be modified as follows:

A.L (ra) - A.L (ra) + Ae(rav t) VCoul - VCouI + zane(ra’ t)'
(46)

Finally, note that the momentum of the field + particles global system has
a simple expression in the Coulomb gauge:

P = Zpa + PR' ) (47)
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The first term represents the momentum of the particles and the momen-
tum of the longitudinal field associated with them; the second term is the
momentum of the transverse field

P = o[ & E (r) X B(r)

- Zf,kja;‘aj (48)

]
where the fields have been replaced by their expressions (29) and (30).

b) UNPERTURBED HAMILTONIAN AND INTERACTION HAMILTONIAN

It is interesting to split the Hamiltonian H of the global system into
three parts:

H=HP+HR+H, (49)

where Hp depends only on the variables r, and p, of the particles
(particle Hamiltonian), Hy depends only on the variables a; and a;" of
the field (radiation Hamiltonian), H, depends both on r,,p, and a;,a;
(interaction Hamiltonian). Starting with expression (40) for H, we obtain,
beside Hj given by (45),

P
H,=H, + H,, + H}} (51

where H,, and H;, are linear with respect to the fields

9
Hll = _Z_’n_.pa.A.L(ra) (52)
UM
Hf, = — L858, " B(r,) (53)

and where H,, is quadratic

q?

Hp, = Z m

a a

A% (r,). 154)
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For systems of bound particles, the relative orders of magnitude of the
different interaction terms are the following:

Hy _dAYm  adp/m _H, )
H;, gAp/m Pz/’" Hp )

For low radiation intensities, the ratio H,,/Hp is small, which results in
the ratio H;,/H,, also being small. The ratio H} /H,, is on the order of

Hi_aib/m WA I 6

which is the ratio between the momentum #k of the photon and the
momentum p of the particle. For low-energy photons (for example, in the
optical or microwave domain) and a bound electron, this ratio is very small
compared with 1.

¢) EQuATIONs OF MOTION

In the Heisenberg representation, the equations of motion can be
deduced from expression (40) for H and the canonical commutation
relations (20.b) and (36).

For the position and the velocity of the particles, we find, respectively,
the relation (37) between the velocity v, of the particle and the momentum
p., and the Newton-Lorentz equation, appropriately symmetrized, giving
the acceleration of the particle in the presence of the fields E and B.

For the transverse fields, we recover the Maxwell equations between
operators. Because the transverse fields are linear functions of a; and a i+’
these equations are equivalent to the equations of motion for the a;:

dj= ’Tf;[a’-,H]

= —iw;a; +

_JZTLT/ d’re=time; - j(r) (57)

which are the quantum equivalents of Equations (18.b), and which have
the structure of harmonic oscillator equations with source terms. In
general, it is not possible to explicitly calculate their solutions, because the
source term depends on the motion of the particles, which are themselves
affected by the transverse field that we are looking for. However, in the

) Y’
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absence of particles, the evolutions of the operators a; are decoupled and
Equation (57) can be integrated to give

a;(t) = a;(0) exp(—iw;t). (58)

The evolution of the free fields can be immediately deduced from (58).
They appear as sums of traveling plane waves with wave vector kj,
frequency w; = ck; and polarization ¢;. For example:

Efree(r t) Zlv 2e L3 X

X(aj(O)ej exp[i(ki ‘r— wjt)] —a; (0)g; exp[-—i(ki ‘r— wjt)]}.
(59

In certain calculations, particularly calculations of photodetection signals,
it is necessary to isolate the components of fields with positive and
negative frequencies. For the free fields, formulas of the same type as (59)
give an explicit expression for these components. For example,

EG(r,1) = E'V P L’ a;(0)e; exp[i(k; - r — w;t)]  (60.2)

free(r t) [E(f:c.z(r”)] . (60b)

In the Schrddinger representation, observables are time independent and
the state vector evolves in state space according to the Schrédinger
equation.

4. State Space

In the Coulomb gauge, the dynamics of the global system is equivalent
to the dynamics of an ensemble of nonrelativistic particles and an infinite
collection of harmonic oscillators representing the modes of the transverse
field. In quantum theory, the state space & of the system is the tensor
product of the state spaces &, and & associated with each of these
subsystems. The spaces &, and &g are themselves tensor products of
spaces relative to each of the particles, and to each of the modes of the
transverse field:

&=""0& ® (61)
gR=...®gj®.... (62)
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We now consider &, in more detail. An orthonormal basis of each of
the spaces & is composed of the basis {In;)} of the energy eigenstates of
the oscillator j. Using expressions (45) and (48) for Hy and Py, the state
Iny> -+ |n;> -+, written more concisely as l{n;}), is an eigenstate of
these two observables:

Hey{n,)) = [z(nj + %)f.w,.],{n,)) (63.2)
Py(n}) = (Zn,hk,),{n,}). (63.b)

It represents a state of the field containing n, photons of the mode
1,..., n; photons of the mode j, with each photon of a mode j contribut-

mgd to the total energy and momentum by the elementary “quanta” ho;
and #k;.

The vacuum is the ground state of Hjy corresponding to n; = --- =

n; = .-+ = 0. It is written more concisely as |0) and is characterized by
the property

a;|0) =0  for each j. (64)
‘I‘n each of the spaces g, the |n j) are not the only interesting states. The
coherent” states la;) play a particular role in the discussion of quasi-

classical situations. They can be deduced from the vacuum |0) by a unitary
transformation

la;) = T*(a;)10) (65)
defined by
T(e;) = exp|afa; — a;a]] (66)
whose action is a translation of the operator a; by the quantity a;
T(a))a,T*(a;) = a; + a;. (67)

The state Ia ) is an eigenstate of the annihilation operator a; having the
eigenvalue a;

ajla;) = ajla;) (68)

2
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and its expansion onto the basis {|n;)} is given by

()"
F

5. The Long-Wavelength Approximation and the Electric Dipole
Representation

la;y = el /2 2 In;). (69)

Atoms and molecules are composed of charged particles (electrons and
nuclei) forming bound states whose size a, is typically on the order of a
few Bohr radii. Assume that such a system interacts with radio frequency,
infrared, visible, or ultraviolet radiation. The wavelength A of this radia-
tion is large compared with a, and it is legitimate to neglect the spatial
variations of the electromagnetic field over the size of the system of
particles: all the particles see the same field. This is the long-wavelength
approximation.

For the sake of simplicity, consider an atom (or a molecule) that is
globally neutral and located close to the origin 0. To lowest order in a, its
electrical properties are characterized by its electric dipole moment

d= ) q,r, (70)

A unitary transformation on the Hamiltonian (40) can cause the coupling
between the atom and the field to appear explicitly in the form of an
electric dipole interaction between the atomic dipole d and the radiation.
To higher orders in a,/A, the same procedure would result in the
appearance of electric quadrupole and magnetic dipole interactions, etc.
Because we neglect them here, we also omit in H the spin magnetic
coupling H}}, so that we start with the approximate Hamiltonian:

H=

—q.A (0)]2 + Veou + Zf""i(afai + %) (711)
j

a) THE UNITARY TRANSFORMATION

The transformation

T=exp[—%d-AJ_(0)]=exp{Z()ta — A4} )} (72)
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where

i
A=

———¢;"d 73
T 2ehe L (73)

is a translation concerning both the operators p,, and the operators a; and
a/. The fundamental operators are in fact transformed according to the
following rules

Tr,T*=r, (74.2)
Tp.T"=p, + q,A(0) (74.b)
Ta,T*=a; + A; (74.c)
Ta/T*=a/+ X3. (74.d)

Because the transformation is time independent, the new Hamiltonian is
written

H' = THT*
p?
= Z 2m + VCoul + Edip + Zhwl(a;'al + %) _
a a ;
—d- L8, [iae; —iaj'e)] (75)
J
where
> 1 d)’ 76
Edip = - 2£0L3(ej ). (76)

b) THE PHysicaL VARIABLES IN THE ELECTRIC DIPOLE REPRESENTATION

The physical variables in the new representation are represented by the
transforms G’ of the observables G which represent them in the original
representation

G' = TGT*. 77)

Starting with expressions (37), (21), (23), and (22) for the operators
representing, respectively, the velocity of the particle a, the transverse
vector potential, the magnetic field and the transverse electric field, we

) Y
App. § Appendix 637

obtain expressions for the new observables which represent these vari-
ables:

v, =Tv,T*= L3 (78)

A (r)=TA, (r)T+= A, (r)
= Z.safwj[ajej e+ afe; e'“‘i"] (79)
j

B'(r) = B(r) (80)
E,(r)=TE, (nT*
= Y., [i(a; + )€™ + h.c]

e () - P ) &)

where P, (r) is the transverse part of the polarization density P(r) associ-
ated with the atom when it is considered as a pointlike dipole:

P(r) = d 8(r) (82)
P,()=1 f’—(%}—) e, (83)

J

Note that, according to (74.a), r/, = r,, so that the position of the particles,
the atomic dipole and the polarization density are represented by the
same operators in the two representations.
¢) THE DisPLACEMENT FIELD

Starting with the total electric field E(r) and the polarization density
P(r), we introduce the displacement field

D(r) = gE(r) + P(r). (84)

We study its properties in reciprocal space, where it is written:

d
2(k) = g8 (k) + W (85)

[Relation (82) has been used to calculate the Fourier transform of P(r)].
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With expression (39.a) for p(k), the Maxwell equation (2.a) is written:

igok + &(K) = @ )3,22% e i T
- ) k-1 8
« ik - « a+ vee |, 6
= 27| 9a~ k- Lar (86)

The expansion in powers of k - r, made in formula (86) is justified in the
long-wavelength approximation because kr, = ka, <« 1. The first term
inside the brackets of formula (86) is zero because the system of charges is
assumed to be globally neutral. The second term is expressed as a function
of the electric dipole. We then have, in the dipole approximation,

k-&(k) + Lﬂ— =0
€o (k) (271_)3/2 =Y (87)

From (85) and (87), it is clear that k - @(k) is zero so that the displacement
field is transverse for a globally neutral system.

Moreover, the polarization P(r) is zero outside the system of charges
(r > a,), and (84) is reduced to

E(r) = D(r)/z,

The displacement field is thus the transverse field which coincides, except
for the factor ¢,, with the total electric field outside the system of charges.
One advantage of the new representation is that a very simple operator
describes D(r)/¢,, and thus the total electric field. Indeed, according to
(84), the transversality of D results in the fact that D = ¢oE, +P, . As a
consequence of (81),

for |r| > a. (88)

1
D'(r)/eo =E (r) + —P', (r)
€9

=E, (r)
=iy&, (a;;e™ " —afe;em ™). (89)
J
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We now return to the Hamiltonian H’. The last term of (75) is the new
interaction Hamiltonian. Using (89), it is written

Hj= —d-D'(0) /e, (90)

#
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and represents the interaction energy between the electric dipole and the
displacement field. It is frequently written in the form

H,’= _d°EJ.(0) (91)

it being understood that E | (r) is the mathematical operator defined by
(29) or (89) as a function of a; and a; * It is usually designated by the term
“electric field”, although it comcxdes with this variable only outside the
system of charges. H' is thus written

H' = H, + Hy + H.. (92)
Hp is given by (45), H] by (90), and Hp by

The new particle Hamiltonian is obtained simply by adding to Hj given in
(50) a dipolar self-energy described by expression (76). However, it should
be noted that, in Hp,p2/2m, is indeed the kinetic energy of the particle
a, according to (78), whereas this is not the case in (50), because the
velocity is given by (37) in this representation.

In all the foregoing, the atom is assumed to be at rest at the origin of
the coordinate system. In certain problems, it is important to take into
account the motion of the center of mass R of the atom. If the atom is
globally neutral, it is sufficient, in the electric dipole representation, to
replace 0 by R in Hj:

D(R)

€o

H = —d = —d-E, (R). (94)
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