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H,, represents the usual non-relativistic free atom Hamiltonian, in which
the clectrostatic particle mass renormalization has been taken into account.
(L) ;7(7) is the “instantancous” electrostatic atom—cavity wall coupling term
(whose exact form depends upon the cavity geometry). This term appears
here as an atomic operator. (T)H represents the free transverse ficld Hamil-
tonian given by eq. (2.10). Hj + Hy describes the coupling between the
atom and the transverse field in the cavity. It also depends upon the cavity
geometry, since A is a sum over the cavity modes. This coupling is the sum
of a term Hj linear in a, and af, and of a term Hyy quadratic in ay, al.. For
sake of simplicity, we will in the following restrict the discussion to a one
electron atom and perform the electric dipole approximation justified by
the fact that the atom size is very small compared to the ficld wavelengths.
We can then replace in Hy + Hyp the 74’s by the position R of the atom
center of mass and we finally get

2 1
H = (m+bm)c® + 21)_m_ + Veoul(r) + E hw, (aLau + 5)
"

2

4 A%(R).

- (2.19)
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2.8. Counting modes between two mirrors: the Casimir cffect

As a simple introduction to cavity QED effects we first describe the trans-
verse ficld modes in a “prototype” cavity made of two planc parallel mirrors
and we consider a situation where there is no atom inside. The Casimir
effect, namely the occurrence of a vacuum radiation pressure between the
mirrors, results from the change in the mode distribution brought about
by the boundaries. We present a simple derivation of this effect and dis-
cuss on this clementary example some of the basic ideas of the cavity QED
renormalization procedure.

The “mirror gap cavity” is shown in fig. 10. The mirrors are in the
z = 0 and z = L planes and the cavity “volume” is the 0 < z < L
infinite slab. The cavity modes are divided into transverse electric (TE) and
transverse magnetic (TM) modes having their clectric ficld and magnetic
field, respectively, parallel to the surface. These modes are superpositions of
plane waves bouncing on the surfaces with wave vectors k. and k_ having
equal components along the mirrors and opposite components along the =
axis:

ki = Fin + ke. (2.20)
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Fig. 10. Cross section of cavity made of two parallel mirrors with representation of the
wave vectors and electric fields in the TE and TM mode configurations.

n is the unit vector normal to the mirrors and ¢ the unit vector parallel
to the mirror along the direction defined by the azimuthal angle . [,k
and ¢ arc the cylindrical coordinates of the k wave vectors and I and k are
related to the mode frequency w by the relation

w2

== % 4+ k2. (2.21)

The total electric field component along the mirrors and the magnetic
field component normal to the surfaces vanish at z = 0 and 2z = L. These
boundary conditions impose the quantization of [:

l=mn/L, (2.22)
so that eq. (2.21) becomes

w? = m2wd + k2, (2.23)
with

wyo=cn/L. (2.24)

The normalized ficld distributions for the TE and TM modes correspond
to lincar superpositions of plane waves with k4 and k_ wave vectors. We
obtain:

1/2
ah, ro(20) = (7) / sin —"—’—Eﬁ kP ey xn, (2.25a)
M B 121k mmz Mwp . MTZ ikp-o
am,k,g,a(zvg) = (V) [-‘: cos i3 n-—i " sin 7 p|c
' (2.25h)
with
Bp=1ifm=0;, B,=2ifm>0 (2.25¢)
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Fig. 11. Three-dimensional representation of the k4, E and B vectors for the TE and
TM modes in front of a plane mirror.

We have adopted for = the cylindrical coordinate notation ( g is the
projection of  along the mirrors). The disposition of n, ¢, E and B vectors
in each of these modes is shown in fig. 11 for TE and TM modes. V is an
arbitrary “quantization” volume introduced here for mode normalization.
This volume is for example a rectangular box of height L in the z dircction,
with sides of arbitrary length a in the z and y dircctions (V = La?).
Note that the normalization is diffcrent for m = 0 and m > 0 modes.
m = 0 modes have no spatial variation along z and, since the transverse
component of the clectric ficld vanishes for z = 0 and 2 = L, they must
have zero transverse electric field everywhere in the gap. There is thus
no TE mode with m = 0. According to eq. {2.23) the smallest possible
TE mode frequency is wp, which is called the TE cutofl frequency of the
gap. The TM modes with m = 0 have a uniform field distribution and
a normalization factor cqual to (1/V)!/2 whereas all the other modes (for
which the square of the sine and cosine function average to 1/2 in the
cavity) have a normalization factor (2/V)!/2. Plugging the mode functions
in cq. (2.5), we separate the vector potential operator as a sum of TE and
TM contributions:

A(z,0) = A%(z,0) + AM(2,0), (2.26)
with

5 h
AE(z,0) = Z {‘/2—507.’_&5"“"(2’ 9)“5.,k,¢ + h.c.}, (2.27)

mk,p
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I
AM(z, 0) = Z {‘/%am'kyv(z,g)am,k_‘p+h.c.}. (2.28)

m,k,p

ak, ., and aM are the photon annihilation operators in the TE and TM
modes. The frequency w in cqs. (2.27, 28) is of course related to m and k
by eq. (2.23).

In order to count the modes, we adopt cyclic boundary conditions for the
transverse wave vector components &, and &y, which are quantized in units
of 27 /a. The unit cell in the transverse reciprocal plane has then an area
(27)2/a? and the number of TE or TM modes with a given m and their
transverse wave vector coordinates in the interval &,k + dk is a2k dk/27.

Differentiating cq. (2.23) we remark that kdk = (1/¢?)w dw and thus the
number of TE or TM modes with a given m and a frequency w between w
and w+ dw is (a?/c?)w dw/2m. According to eq. (2.23), a given w value can
be obtained with m varying from 0 up to Int(w/wp), where Int() denotes
the integer part function. Finally, for cach sct of m, k, ¢ values with m > 0,
there is one TE and one TM mode and only one TM mode if m = 0. Thus
the number of modes in a unit frequency interval at frequency w, which we
call the mode spectral density pl™)(w) is

27c? wo

pmmhd=a%)b+2hm(i>} (2.29)

This expression can be written in a slightly different way by introducing
the cavity volume V = La? and by replacing Int(w/wp) by a sum of Heav-
iside functions @ (w/wy — m) (O is equal to one if its argument is strictly
positive, to zero otherwise):

cav Vwuwy — w

m=1 wo

The free-space density is recovered by letting L go to infinity. Then wy — 0
and pl)(w) reduces to the well known expression

Vw?
e

PO(w) = (2.31)
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Fig. 12. The maode spectral density p(""“’)(u) as a function of angular frequency w in the
plane parallel mirror gap (solid line). w is measured in units of the gap cutoff frequency
wp. The modes are counted in a box of volume a2L. The frec-space mode density is
represented as a dashed line for comparison.

Figure 12 displays the mode spectral density in the gap (solid line) and
in frec-space (dashed line) as a function of w. The two densities are very
different from cach other for w smaller than or of the order of wg. The
relative difference between the two densitics becomes small at frequencies
large compared to wp. We thus expect that physical effects related to
the cavity induced change in the mode density essentially come from the
contribution of frequencies up to a few wo.

We now proceed to compute the Casimir effect {2,66,67]. The change of
the mode spectral distribution with L entails a variation of the total ficld
vacuumn cnergy versus the gap separation and hence results in the existence
of a force pulling the mirrors together. The vacuum ficld energy W(L) in
a section a2 of the gap is

+% hw a*h >
w = T (cav) = ]
(L) /0 2 4 (w) dw 47!'62 [IO + 2 mz=1 Im] [ (2 32)
with I,,, defined as
+o00
I, = / w? dw. (2.33)

W (L) obviously diverges, due to the contribution of the high frequency
modes. The divergence of Iy is not a problem since only the part of W (L)
which depends upon L is physically significant. As for the I,, (m # 0)
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Fig. 13. Sketch of the mirror configuration considered in the derivation of the Casimir
interaction between plates: the gap of width L is embedded in a larger gap of width

Lg. The variation of the ficld encrgy with the position of the intermediate mirror is the
relevant physical quantity.

integrals, we will compute them by multiplying the integrand by a converg-
ing term c~/¢ whose physical meaning will be discussed later. We will
check at the end of the calculations that the final result has a well-defined
limit for A — 0. We get the following expression for I,

+00
I, = / W2 C—'\"}/C dw
’

nweflL
9 a'.! +o0 Mo/
=¢ e dw
02 mnc/L
. 02 e-m?rz\/L
- VA 2.34
o2 -] (234)

and for the sum over m,

&) a2 o0 —-mnA/L
Z Im = —(‘Bw {z E——/\——}

m=1 m=1
S a2 1 1
D S 2.35
L o2 {m\/Le”’VL—l} (2:35)

The asymptotic cxpansion of the bracketed function in eq. (2.35) writes

R S S +1__1_(W_A_)”+
aA/Lem™ L1~ (zA/L)? 2xA/L 12 720\ L

(2.36)
Combining then cgs. (2.32), (2.35) and (2.36) we get
a’h a’he [ 6L 1 272
W)= gralot = Lw ~x Tt ] - (2D
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Consider now that the gap L is embedded in a larger gap of width Ly >
L, with the two extreme mirrors being fixed and the intermediate movable
mirror reflecting the ficld on both sides (sce fig. 13) and let us determine the
total change in vacuum encrgy when L is varied. Adding the contributions
of the L and L — Lo gaps, we immediately get the total energy Wer(L):

Wr(L)

_a*h I a®he [ 6Lg 2 272
S ma ot [7r2)\4 TN 72008 +] (2:38)
We have neglected in eq. (2.38) the contribution 1/(Lo — L)3, which is very
small compared to the 1/L® term. For a different configuration {L', Ly ~
L'}, Wr(L') is given by the same expression with L replaced by L’ and the
change in the system energy is

2r2he (1 1
Wr(L') - Wr(L) = - 225 (ﬁ - -I-J—J-) . (2.39)

The system has thus a X independent potential energy U(L) given by

nZhe , 1
a it

V)= -mg o5

(2.40)

There is consequently a vacuum pressure Py, pulling the plates together:

Pvac = a—z-é—f; = E{(—)-fi (241)

The order of magnitude of this vacuum pressure is very small, about 1073
Pa for L = 1 mm. It is equivalent to the electrostatic pressure experienced
by metallic plates charged with one electron per L? area! Attractive forces
between plates related to this tiny interaction have been measured [68-69).

Let us come back to the physical significance of the mathematical trick
we used to get a converging result for Py,c. Introducing the exponential cut-
off function ¢~*%/¢ amounts to suppressing the contribution to the Casimir
cffect of modes with wavelengths shorter than A. This means that the pres-
ence of the metallic boundaries makes no difference for the mode density
at short wavelengths. In fact, all real mirrors do have a plasma cutoff fre-
quency above which they are transparent, so that it is natural to assume
that the actual mode density cannot be altered above a finite frequency.
In other terms, the converging factor has a physical justification. A more
physical cutoff procedure, taking also into account explicitly the dephasing
of the ficld on real mirrors has reecently been performed on the Casimir
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problem [70]. The fact that the result of the calculation is independent of
A means that the Casimir effect does not depend upon the nature of the
mirrors, provided their cutoff frequency corresponds to wavelengths much
shorter than L. The system we considered to compute the vacuum pressure
between the plates (sce fig. 13) is quite similar to an osmotic pressure de-
vice. The intermediate moving niirror acts as a piston impermeable to low
frequency photons but transparent to high frequency ones. We will intro-
duce similar converging factors in integrals appearing in the expression of
cavity QED level shifts, with basically the same justification. The results
will again be insensitive to the details of the cutoff, which will ultimately
justify the fact that cavity QED can be to a large extent discussed without

having to define the nature of the cavity walls. // )
2.4. Radiation of atoms in a cavity: modification of 5pontaneous emission
rales

The cavity walls around the atom modify the atomic energy levels and the
spontancous emission rates of atomic excited states. We first analyze the
latter effcct. Consider an excited eigenstate |a) of the atomic Hamiltonian
H,, connccted to lower states |j) by a non vanishing matrix element of
the clectron momentum operator p. Spontaneous emission corresponds
to the transition |a,vacuum) — |j;1 photon in mode p, frequency wy)
(fig. 14a). This process is induced by the Hy = —(g/m)A - p term of
the atom-ficld Hamiltonian. If the cavity provides a continuum of modes
for the emitted photon (wave guide structure or “moderate Q” cavity), the
emission process is irreversible and the decay rate depends upon the density
p{)(w,;) of photon modes at frequency w,j (number of modes per unit
frequency interval at w = w, ;). Describing the bandwidth I, of each mode
in a simple phenomenological way, we can write the mode density as

PENw) = b, (w— wy), (2.42)

14

where 6r, is the normalized Lorentz function of width I, introduced in

section 1. The total decay rate 'y,(f_“,‘;) from level a to j is obtained by using
the Fermi Golden rule:

av 2n .
7] = 23 2ol 0 Hi 15 1) b, (wag = w). (243)

Replacing in this equation Hp by its expression and using the expansion



