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It might come as a surprise that both the gecko’s abil-
ity to walk across ceilings in apparent defiance of gravity and
the evaporation of black holes through Hawking radiation
can be understood as arising from zero-point fluctuations of
quantum fields. The connections can be made thanks to work
done at Philips Laboratories in the late 1940s by Hendrik
Casimir and collaborators, work described in a series of three
papers.1–3

Almost two decades earlier, Fritz London had used the
new quantum theory to derive the attractive force between
atoms or molecules without an electric dipole moment; his
result represents one of the theory’s early major successes. Be-
fore London’s calculation, the van der Waals attraction be-
tween polar molecules was understood, but the origin of the
experimentally known nonzero van der Waals correction to
the gas law for nonpolar gases such as helium was a mystery.
London explained the origin of the attractive force between
nonpolar molecules or atoms as due to zero-point fluctua-
tions in the positions of their charged constituents.

The basic idea was delightfully presented in PHYSICS
TODAY by Daniel Kleppner (October 1990, page 9), so it will
not be fully reproduced here. Briefly, one imagines two in-
teracting atoms as identical, spherically symmetric harmonic
oscillators. When the two oscillators are separated by a dis-
tance R, they interact, and the originally degenerate natural
frequencies ω0 are split, becoming ω± = ω0√1 ± κ. Here κ is
the dipole coupling strength, proportional to 1/R3. If a zero-
point energy �ω±/2 is assigned to each frequency and the total
energy for the system at infinite separation is subtracted, one
obtains an interaction energy E ∝ �ω0/R6, to lowest (second)
order in κ.

Power failure
The interatomic potential determined by London varies in-
versely as the sixth power of the separation between the
atoms. However, in their experimental work with colloids at
Philips Labs in the Netherlands, Theo Overbeek and Evert
Verwey observed a different behavior at large distances. The
attractive potential between the colloidal particles, assumed
to result from the attractions between the individual atoms
that the particles comprise, appeared to fall off faster than
1/R6. Noting that London’s calculation assumed an instanta-
neous electromagnetic interaction, Overbeek suggested that

if the finite velocity of light were taken into account, the van
der Waals potential might be modified at large separations.
Overbeek approached Casimir (shown in figure 1) and Dik
Polder, who together attacked the problem.1 The two first
considered a simpler system, a single atom in an electro-
magnetic cavity with perfectly conducting walls, and they
calculated the atom’s interaction with the nearest cavity wall
as a function of separation distance. Using a full zero-
temperature quantum electrodynamic treatment of the field
in the cavity, they showed that for large separation the atom
would be attracted to the wall by a force now called the
Casimir–Polder force. Moreover, the energy of attraction has
the surprisingly simple form

(1)

where c is the velocity of light and α is the static electric po-
larizability. Casimir and Polder next calculated the energy of
attraction between two atoms and found that for two identi-
cal atoms,

(2)

Casimir and Polder’s calculation is not simple; Evgeny
Lifshitz, in a paper that presents an extension of Casimir’s
calculation to real materials, and about which more will be
said, commented on the calculation’s unwieldiness.4 But the
formulas are simple, and that simplicity inspired Casimir to
seek a fundamental explanation. He mentioned his results to
Niels Bohr and, he reported,5 “Bohr mumbled something
about zero-point energy.” That remark was enough to lead
Casimir to formulate a new approach that allowed him to re-
produce the results—previously obtained with much labor—
in about two printed pages.2 In the new approach, Casimir
simply assigned a zero-point energy �ω/2 to every mode of
the cavity and calculated the net shift in zero-point energy by
using the well-known formula for the perturbation of cavity-
mode frequencies:

(3)
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where α is the static electric polarizability of a particle placed
at location (x0, y0, z0) in the cavity, E0(x, y, z) is the unper-
turbed field, and the integral is over the cavity volume. The
energy is formally determined by a sum over all cavity
modes, which diverges, but the energy of attraction can be
obtained by taking the energy difference for two
particle–wall separations. Casimir’s technique reduced a full
quantum electrodynamics problem to a simpler classical elec-
tromagnetism problem. 

Note that “time” does not appear explicitly in the calcu-
lations I have discussed, so it would seem that the term “re-
tarded van der Waals” to describe the force modification in
the long-distance region is a holdover from Overbeek’s orig-
inal suggestion. In Casimir’s calculations, as the distance
from the wall or the distance between two atoms increases,
the contributions from high frequency modes tend to aver-

age to zero and only the long-wavelength modes con-
tribute to a coherent sum. However, the calculations
can be done with other methods, such as using
Green’s functions, and the effect of time delay can be
elucidated.

In the final paper of the series,3 Casimir performs
what he calls the “obvious extension” to the force be-
tween the cavity walls themselves due to the cavity’s
zero-point field and obtains the famous result for the
attractive force between two perfectly conducting
plates:

(4)

where d is the plate separation and A is the plate area.
The electron charge does not explicitly appear in
Casimir’s formula; the electron’s role as charge car-
rier is to provide the physical basis for the perfectly
conducting boundary condition.

Real materials
Casimir’s conducting-plates paper is among the most
important in the history of physics, because it shows
that the boundary conditions of a system can affect
the zero-point energy of the system and, hence, the

system’s properties. The concept has wide application in
physics, as attested by the thousands of citations to the paper.

Casimir’s work was first extended by Lifshitz in what
stands as a masterpiece of mathematical physics. Lifshitz’s
work was done in support of the experimental studies of
Boris Derjaguin and Irina Abrikosova, who were investigat-
ing the short-range attractive forces between dielectric mate-
rials.6 Lifshitz generalized Casimir’s perfect-conductor calcu-
lation by treating the electrodynamic mode boundary
problem for real materials. Such an extension was required
for two reasons: First, individual atomic or molecular polar-
izabilities are modified when the atoms or molecules are as-
sembled into a bulk material. Second, as was first suggested
by Benjamin Axilrod and Edward Teller,7 the van der Waals
forces are not additive: The presence of a third atom in the
vicinity of an interacting pair modifies the two-particle in-
teraction. The most straightforward way to address a real 
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Figure 1. Hendrik
B. G. Casimir
(1909–2000), around
1950, when he did his
pioneering work on
the consequences of
electromagnetic zero-
point energy. (Courtesy
of American Institute of
Physics, Emilio Segrè
Visual Archives.)

Figure 2. A plane–cylinder geometry is employed in a new Casimir-force experiment under development by Roberto Onofrio
and colleagues at Dartmouth College. The plane, a gold-plated silicon wafer 1 cm wide and 200 μm thick, is clamped along
one edge between two plates of aluminum and is configured as a mechanical resonator. The vertical white object is an optical

fiber used for interferometric distance
measurement. In the foreground is the
cylinder holder, mounted on a piezo-
electric transducer for fine distance
control; mechanical actuators provide
coarse distance and tilt control. The
cylinder, a gold-coated optical-quality
cylindrical lens, is 2 cm long and 1 cm
wide, with a radius of curvature of
2 cm. A change in the mechanical res-
onance frequency of the clamped plane
will provide a measure of the gradient
of the Casimir force. The Dartmouth
group hopes to obtain sufficient sensi-
tivity to measure with high accuracy the
thermal correction to the Casimir force.
(Courtesy of Michael Brown-Hayes and
Roberto Onofrio, Dartmouth College.)
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material is to solve the electromagnetic boundary condition.
Note, however, that if the polarizability is determined

from the index of refraction by using the textbook Clausius–
Mosotti relation, then as the index of refraction approaches
infinity, a direct summation of the van der Waals forces be-
tween molecule pairs in adjacent plates gives a total force that
comes within 20% of the perfectly conducting Casimir result
(reference 8, page 250). The near equality suggests that it is
reasonable to approximate the force between colloidal parti-
cles by using Hamaker coefficients—that is, pairwise sums of
the van der Waals force between molecules—for a specified
geometry. In any case, the full mode calculation for the at-
traction of two dielectric spheres has not been performed to
date. The determination of attractive force by pairwise addi-
tions breaks down badly when the properties of a high-
density material are significantly different from those be-
tween the individual atoms or molecules that the material
comprises. Such is the case, for example, in fused silica and
many other dielectric materials. In those situations, one can
treat the system as an electromagnetic-cavity boundary prob-
lem, provided that the material’s complex electric permittiv-
ity ε(ω) = ε’(ω) + iε’’(ω) is known.

Source of the force
Casimir’s result, equation 4, strongly suggests a reality of the
electromagnetic zero-point energy. When Casimir told Wolf-
gang Pauli about the attraction of two conducting plates,
Pauli rejected the notion as “absolute nonsense.”5 However,
Casimir persisted, and Pauli eventually accepted the unde-
niable and inevitable conclusion that the plates do attract.

Pauli’s initial reaction is not surprising. In his Lectures on
Physics,9 he states, “For radiation the zero-point [energy of
the electric field] is not important” (page 75). He had con-
sidered the effects of an electromagnetic zero-point energy
and came to the conclusion that its gravitational effect would
be so enormous that the radius of the universe “would not
even reach the moon” (page 115). Pauli’s calculation, which

was never published, cuts off the zero-point fluctuation field
for wavelengths shorter than the classical electron radius re ,
defined by setting the electron’s rest energy equal to the en-
ergy of its electrostatic field. The total energy density is given
by the sum of the zero-point energy of each mode, �kc/2, and
the mode density is 2 × 4π2k2dk/(2π)3, where the prefactor 2
accounts for the two polarization states of each mode. Thus
the energy density is

(5)

Taking kmax = 2π/re and re = 2.82 × 10 –13 cm, one finds ρE to be
about 1014 g/cm3. That is some 10 43 times larger than the
presently accepted value of the dark-energy component of
the universe, 10 –29 g/cm3. 

Defining the cutoff in terms of the classical radius of the
electron is artificial. A more natural cutoff would correspond
to the Planck length, lp = √�G/c3 = 1.6 × 10 –33 cm, and
would yield an energy density ρE of about 1095 g/cm3, some
124 orders of magnitude larger than the observed back-
ground energy density. Although I have considered the elec-
trostatic field for specificity, a comparably gross discrepancy
between estimated and measured energy density arises in
more elaborate field theories; the conundrum is called the
cosmological constant problem. Physicists have considered
the possibility that fermionic fields, which have negative
zero-point energy, might cancel the positive bosonic-field
zero-point energy, but the level of fine tuning required is be-
yond imagination. Furthermore, it is the fluctuations of the
fields that must cancel. To paraphrase Bernard Sadoulet,
when Max Planck solved one UV divergence by introducing
the concept of quantization, he created another, perhaps
more subtle, UV divergence.

Some light can be shed on the cosmological constant
problem by considering Lifshitz’s extension of Casimir’s cal-
culation. In the Lifshitz calculation, fields have no zero-point
energy; they are completely classical but coupled to the ma-
terial. If one Fourier transforms the material’s position fluc-
tuations to obtain a spectral density, at each frequency ω = ck
there is a zero-point energy �ω/2 that persists, even at ab-
solute zero. Those material fluctuations, at finite tempera-
ture, are responsible for Johnson noise, for example, which is
well-known in electronics, and follow from the quantum
fluctuation–dissipation theorem. If the real and imaginary
parts of the electric permittivity ε(ω) are given for the mate-
rial that makes up the two flat plates, the allowed modes be-
tween the plates can be determined; the imaginary part of ε
represents dissipation and thus serves as the source term for
the electromagnetic fields between the plates. 

The point is that the Casimir force and related forces can
be understood without reference to fluctuations of the vac-
uum itself. For example, Casimir and Polder could have per-
formed their calculation while considering a real material for
the cavity walls, one with dissipation. The field excitations
would follow the material fluctuations, with �ω/2 being the
apparent zero-point energy of each cavity mode, but there
would be no field quantization. The alternate point of view
just presented raises an issue similar to the historical ques-
tion as to whether the photoelectric effect or Planck’s treat-
ment of blackbody radiation provides direct proof for the ex-
istence of photons: In both of those cases, one cannot decide
between quantization of the field and quantization of the
field–matter interaction. That is not to say that photons do
not exist, but that experimental proof for the quantization of
the electromagnetic field must be sought elsewhere.

Remarkably, Sergei Rytov, who is referenced by Lifshitz,

Figure 3. The Casimir–Polder force between a Bose–
Einstein condensate (BEC) of atoms and a fused silica sur-
face has been measured by Eric Cornell and colleagues
at JILA. The gradient of the Casimir–Polder force, which is
manifested as an additional harmonic term to the trap
potential, affects the vibration frequency of the BEC in the
direction perpendicular to the surface. This schematic
shows that the BEC is well localized near the fused silica
surface. A laser heats the silica and allows for an investi-
gation of the force’s temperature dependence. (Courtesy
of John Obrecht and Eric Cornell, JILA.)



www.physicstoday.org February 2007    Physics Today 43

and Herbert Callen and Theodore Welton independently and
roughly simultaneously developed formalisms along the
lines sketched above. Callen and Welton provide the more
general treatment.10 In their view, the vacuum represents a
dissipative medium; the quantization occurs in the material,
and the vacuum contributes to the imaginary part of the elec-
trical permittivity. Further, it was pointed out by Timothy
Boyer that the electromagnetic modes responsible for the
Casimir force are not free-space modes but evanescent sur-
face modes of the material. So the existence of the Casimir
force really doesn’t say anything about the vacuum of space
itself; rather, it speaks to the interactions of materials with
their own nearby electromagnetic modes.

The question remains: Does the vacuum of free space
contain zero-point energy manifested as a cosmological con-
stant or other kind of dark energy? The modern observations
of an accelerating cosmos imply the existence of a dark en-
ergy that imbues space. However, given the rather ridiculous
zero-point energy associated with the electromagnetic and
other fields, one should probably conclude that those fields
do not contribute to the dark energy. Rather, the observed en-
ergy is an artifact of the way fields interact with matter: The
interaction allows the fields to be treated as having a zero-
point energy. Of course, that argument is not entirely satis-
factory. But it is fair to say that the study of Casimir and re-
lated zero-point energy effects doesn’t tell much about the
properties of the vacuum of free space, though it can con-
strain those properties. For example, simply setting kmax of the
zero-point fluctuations to be small enough to agree with the
observed cosmological dark energy would be inconsistent
with the experimentally verified Casimir and related forces.

Recent advances
Within a few years of Casimir’s prediction of the attractive
force between parallel plates, Marcus Sparnaay performed the
first experimental test. His result had roughly 100% uncer-
tainty but conclusively demonstrated a short-range attraction.
Until fairly recently, that experiment was the most often
quoted experimental proof of the Casimir force. In the years
after Sparnaay’s experiment, a number of experiments ex-
plored various systems—with metals, dielectrics, ionic fluids
in the space between the plates, and so forth. In 1973 Edward
Sabisky and Charles Anderson tested the Lifshitz theory by
measuring how the vapor pressure of a thin superfluid liquid
helium film adsorbed on a freshly cleaved alkaline-earth fluo-
ride crystal varied as a function of film thickness. Their meas-
urements agreed with the theory to within a few percent.

When I began my own experimental work in 1994, as a
supervisor of what ended up being a series of undergradu-
ate senior research projects at the University of Washington
in Seattle, the most accurate of the experiments between bulk
objects had determined the exponent in the Casimir force law
to about 20% and obtained a similar precision for the multi-
plicative coefficient. Our hope was to improve the experi-
mental accuracy, extend the measurements to longer dis-
tances, and measure the effects of nonzero temperatures,
expected to dominate at distances larger than 4 μm. How-
ever, the experimental sensitivity was about an order of mag-
nitude away from being able to detect the finite-temperature
correction. I eventually obtained results that could be used to
determine the parameters in the force law over a range of dis-
tances from 0.6 μm to about 6 μm.

That experiment ended up being a watershed for renewed
interest in the subject, both for theory and experiment. It was
clear from my work that the finite-conductivity correction ob-
tained by simply treating the metals according to a plasma
model is completely incorrect. Astrid Lambrecht and Serge
Reynaud performed the first accurate calculation, and after I
corrected a 10% calibration error in my experiment, the agree-
ment between their theory and my result was satisfactory.11

In 2000 Mathias Boström and Bo Sernelius showed that
the form of the electric permittivity has a critical effect when
one calculates the finite-conductivity correction in combina-
tion with the nonzero-temperature correction.12 In the usual
approach, the finite-temperature correction is treated by re-
placing the zero-point excitation �ω/2 with �ω coth(�ω/2kBT),
where kB is Boltzmann’s constant. The latter function has sim-
ple poles on the imaginary axis at �ω/2kBT = inπ, so the inte-
gral over frequency in the Lifshitz formalism is replaced by
a sum of the residues of the spectral function at those poles.
The dominant contribution comes from the pole at n = 0.
Boström and Sernelius assumed the material to have an elec-
tric permittivity given by the so-called Drude model and
found that the contribution of the n = 0 transverse electric
mode vanishes. So, compared with previous calculations in
which the transverse electric and transverse magnetic modes
had roughly equal contributions, their result shows a large
correction to the force at distances of order 1 μm and demon-
strates that the force is reduced by a factor of two for large
separation. 

However, the theoretical story is far from simple. Boström
and Sernelius’s result apparently disagrees with a number of
experiments and most significantly with my own. Their cor-
rection is about as large as the plasma-model corrections that

Figure 4. The fused silica substrate, Pyrex holder, and Pyrex chamber are visible in this photograph of the JILA group’s experi-
mental trapping volume. (Courtesy of John Obrecht and Eric Cornell, JILA.)
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I ruled out. A study of the spectrum of the finite-temperature
correction suggests that low frequencies make the dominant
contribution; the frequencies are low enough that it might not
be possible to describe the response of the metal in terms of a
simple Drude-model electrical permittivity. 

The principal theoretical issue is that, in the 109 to 1012 Hz
range, the electron’s mean free path in a metal can exceed the
electromagnetic skin depth. That would lead to nonlocal cor-
relations and imply that the permittivity cannot be described
by a simple analytic function. The problem of nonlocal cor-
relations in metals was first addressed in detail in the 1940s
by Fritz London’s slightly less famous brother Heinz, but it
has yet to be treated in detail in a satisfactory manner. 

It is fair to say that finite-conductivity effects and the
thermal correction to the Casimir force are experimental
questions. My colleagues and I hope to construct a new 
torsion-balance experiment that will allow accurate meas-
urements at long distances and address those issues. Roberto
Onofrio’s group at Dartmouth College is experimentally ex-
ploring the thermal correction to the Casimir force; the ex-
periment is shown in figure 2. On the other hand, the finite-
temperature correction to the Casimir–Polder force has been
measured by Eric Cornell’s group at JILA. Figures 3 and 4 dis-
play that experiment, and figure 5 gives the results, which
are in good agreement with theory. Unfortunately, the nature
of the calculations for the Casimir and Casimir–Polder forces
are quite different.

The present state of theory and experiment has been re-
viewed in a special edition of the New Journal of Physics.13 In
particular, Onofrio reviews the status of the most accurate ex-
periments, with an eye toward understanding the feasibility
of looking for new long-range forces that might extend some
microns from a material surface. Those forces are associated
with corrections to Newton’s law, and their existence is sug-
gested by string theory.

The desire to test for such forces strongly motivates a
fuller theoretical understanding of corrections to the Casimir
force: The effects of oxide coating, absorbed water, absorbed

hydrogen, roughness—essentially an endless list—all need to
be addressed. It may not be possible to calculate the force to
better than 10% for plate separations less than 1 μm, mostly
because the material properties cannot be known to sufficient
accuracy. It likely is possible to perform highly accurate cal-
culations for large plate separations, for which the Casimir
force becomes small and the material properties less impor-
tant. Still, the lower distance-range limit of tests for new
forces would be restricted. Some techniques have been pro-
posed to get around these problems, most notably placing a
conducting shield between the two plates. That would allow
the position of one plate to be varied without affecting the
electromagnetic modes between the shield and the other
plate. Of course, the shield’s introduction presents an inter-
esting experimental alignment problem, and it is unlikely
that such a shield could be implemented for distance ranges
significantly less than 1 μm; the shield needs to be thick
enough to be effective.

Applications
One of the first applications of the Casimir force was Casimir’s
own attempt to derive the fine structure constant α. His idea8

was to model the electron as a conducting sphere of radius re.
The associated zero-point energy comes primarily from fre-
quencies near c/re , so the energy can be estimated as

(6)

where C is a dimensionless constant that, if positive, implies
an inward force. That inward force balances the outward
Coulomb force when the magnitudes of the corresponding
energies are equal: e2/2re = C�c/2re. Thus, e2/�c = α = C and is
independent of the radius. A detailed calculation of C by
Boyer, however, shows that Casimir’s intuitive approach was
off the mark: The constant is negative, equal to about −0.09;
that is, the stress on a conducting sphere tends to make it ex-
pand. Boyer’s result remains of interest because it highlights
the geometry dependence of the Casimir force, a subject that
has received considerable attention.

When one considers the acceleration of conducting
plates in a cavity, new physics comes into play that is related
to the evaporation of black holes. The so-called dynamical
Casimir effect posits that photons can be generated when the
plates are accelerated toward each other. The effect is closely
related to the Unruh–Davies effect,8 in which an accelerated
detector appears as immersed in a thermal blackbody radia-
tion bath with temperature

(7)

where a is the acceleration. The Unruh–Davies effect can be
roughly understood by considering a virtual photon that
propagates away from an accelerated object. When the pho-
ton returns some time later, its energy is no longer equal, in
the accelerated frame, to its value when it left the object; de-
tailed calculation shows that its energy increases. It is tempt-
ing to invoke the equivalence principle and assign the tem-
perature defined by equation 7 to a particle in a static
gravitational field. However, that move fails. In a static grav-
itational field, the relative change in energy does not occur,
because the virtual photon and the object are subjected to the
same acceleration. 

On the other hand, when equation 7 is used to calculate
the surface temperature of a black hole, which is accepted as
dynamic and fluctuating, one finds Stephen Hawking’s re-

Figure 5. The vibration frequency of a Bose–Einstein
condensate in the JILA experiment varied with distance
from the fused silicon substrate and with temperature.
The vertical axis is the fractional shift in frequency as
compared with its asymptotic value. The lab temperature
is 310 K. The colored curves give the group’s theoretical
calculations, which agree well with the experimental
data. (Courtesy of John Obrecht and Eric Cornell, JILA.)



www.physicstoday.org February 2007    Physics Today 45

sult: T = �c3/8πGMkB, where, in equation 7, a has been taken
as the gravitational acceleration at the black hole surface and
here M is the black hole mass. The exact agreement is prob-
ably coincidental, but it is compelling enough to suggest a di-
rect relation between zero-point fluctuations and the quan-
tum evaporation of black holes.

A more practical application of the Casimir and related
forces is to the wetting of surfaces by liquids. (For an intro-
duction to wetting, see the Quick Study on page 84 of this issue
of PHYSICS TODAY.) A generalization of the Lifshitz theory
shows that the relative electric permittivities of the surface and
liquid determine whether wetting occurs. In a most striking
application, Michael Elbaum and Michael Schick applied the
generalized theory to the wetting of ice by liquid water.14 They
found that, due to peculiarities in the dielectric functions of
water and ice, the ice does not wet in the usual way. Instead, a
very thin film of water forms, with additional water forming
droplets on top of that thin film. Of course, the ice–water sys-
tem is metastable, but in experiments in which liquid water
condensed on an ice crystal facet, droplets with a contact angle
of order 1° were observed to form, supporting the theoretical
result.15 The formation of a thin liquid layer on ice has been
identified as a crucial element in the generation of large po-
tentials in thunderstorms.16 The possibility of such a close con-
nection between zero-point fluctuations, generally thought of
as among the most feeble of effects, and one of nature’s most
powerful and awesome spectacles cannot go unnoticed.

Another of nature’s spectacles—the amazing ability of
the gecko to walk, or even run, across ceilings without the
means of a sticky substance or mechanical device such as a
claw—can be explained in terms of van der Waals forces. Kel-
lar Autumn and coworkers at Lewis and Clark College have
conclusively proven that the sticking powers of the gecko’s
toes are due to the molecular attractive forces between closely
spaced surfaces.17 As shown in figure 6, the structure of the
gecko foot is quite complicated. At the nanoscale, individual
setae terminate in a small pad. The attractive force between
the pad of a freshly plucked setal array (the gecko doesn’t
seem to mind too much) and various surfaces has been di-
rectly measured to be in good agreement with expected mo-
lecular attractive forces. In fact, the special structure of the
gecko’s foot makes it self-cleaning and has inspired the de-

velopment of a new type of
adhesive tape.

Changing times
Casimir, in his quest to under-
stand the simplicity of the re-
sult he obtained with Polder,
came to the startling conclu-
sion that the zero-point energy
of the electromagnetic field

leads to the attraction between nonpolar molecules or atoms.
Consequently, he extended his idea to derive the attractive
force between two flat plates. The notion that the zero-point
energy of the electromagnetic field could lead to observable
consequences had been rejected by Pauli.

Times were changing, however. Julian Schwinger, Victor
Weisskopf, and J. Robert Oppenheimer recognized that the
Lamb shift could be understood as the interaction of a hy-
drogen atom with the zero-point fluctuations of the electro-
magnetic field. That recognition provided the basis for Hans
Bethe’s 1947 calculation of the Lamb shift (see the article by
Freeman Dyson, PHYSICS TODAY, October 2005, page 48).
Could it be possible that Bohr had the Lamb shift in mind
when he provided Casimir with the tip that set Casimir onto
his fruitful calculational method? Bohr’s suggestion came
after the publication of Bethe’s Lamb-shift paper, in which the
role of the electromagnetic field energy is mentioned, and it
is likely that Bohr knew about those results. In any case, the
role of serendipity in the development of science cannot be
overestimated.
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Figure 6. A gecko foot is
depicted at various length
scales. Visible at the smallest
scale are the setal pads
responsible for the van der
Waals sticking that allows a
gecko to walk on ceilings. The
oval in the lower right shows a
synthetic nanostructure
inspired by the setal pads.
(Courtesy of Kellar Autumn,
Lewis and Clark College.)


