Cold fermions

At absolute zero temperature …

Bosons

Particles with an even number of protons, neutrons and electrons

Bose-Einstein condensation⇒ atoms as waves \Rightarrow superfluidity

Fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- ⇒ Atoms are not coherent
- ⇒ No superfluidity

Fermidus in a box $\frac{P_F - h(6\pi^2 n)^{1/3}}{E_F - P_F^2/2m}$ $n = \left(\frac{E_F}{2m}\right)^{3/2} \frac{1}{6\pi^2 k^3}$

Fermidus in a box $\frac{P_F - h(6\pi^2 h)^{1/3}}{E_F - P_F^2/2m}$ $n = \left(\frac{E_F}{2m}\right)^{3/2} \frac{1}{6\pi^2 h^3}$

Fermions in an HO

$$
E_F = (GM)^{1/3} \text{ln } W
$$
\n
$$
F_F = n(r) = \left(\frac{E_F - V(r)}{2r}\right) \frac{V_2}{6\pi^2 k^3}
$$
\n
$$
\text{local density approximation}
$$

Freezing out of collisions

No interactions if range of potential is < $\lambda_{\sf dB}$

Pairs of fermions

Particles with an even number of protons, neutrons and electrons

Two kinds of fermions

Fermi sea: ⇒ Atoms are not coherent ⇒ No superfluidity

At absolute zero temperature …

Pairs of fermions

Particles with an even number of protons, neutrons and electrons

Bose-Einstein condensation⇒ atoms as waves \Rightarrow superfluidity

Two kinds of fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- ⇒ Atoms are not coherent
- ⇒ No superfluidity

Weak attractive interactions

Cooper pairs larger than interatomic distance momentum correlations \Rightarrow BCS superfluidity

Two kinds of fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- ⇒ Atoms are not coherent
- ⇒ No superfluidity

Disclaimer: Drawing is schematic and does not distinguish nuclear and electron spin.

Two atoms ….

… form a stable molecule

Atoms attract each other

Atoms repel each other Atoms attract each other

Atoms repel each other Atoms attract each other

S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, WK, Nature **392** (1998).

Bose Einstein condensate of molecules

BCS Superconductor

3EC

BCS sup

Magnetic field

BCS sup

3EC

Crossover superfluid BCS sup

How do atoms pair?

Two-body bound states in 1D, 2D, and 3D

1D, 2D: bound state for arbitrarily small attractive well 3D: Well depth has be larger than threshold

Connection to the density of states

$$
\frac{\hbar^2}{m}(\nabla^2 - k^2)\psi = V\psi
$$

In momentum space

$$
\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{m}{\hbar^2} \frac{1}{q^2 + k^2} \int \frac{d^n q'}{(2\pi)^n} V(\mathbf{q} - \mathbf{q}') \psi_{\mathbf{k}}(\mathbf{q}')
$$

Connection to the density of states

$$
\frac{\hbar^2}{m}(\nabla^2 - k^2)\psi = V\psi
$$

In momentum space

$$
\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{m}{\hbar^2} \frac{1}{q^2 + k^2} \int \frac{d^n q'}{(2\pi)^n} V(\mathbf{q} - \mathbf{q}') \psi_{\mathbf{k}}(\mathbf{q}')
$$

Short range potential: $\textsf{V}(\textsf{q})\textsf{=} \textsf{V}_{\textsf{0}}$ for q<1/R

$$
\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{mV_0}{\hbar^2} \frac{1}{q^2 + k^2} \int_{q' < \frac{1}{R}} \frac{d^n q'}{(2\pi)^n} \psi_{\mathbf{k}}(\mathbf{q}')
$$

Integrate over q, divide by common factor $\int_{q<\frac{1}{R}} \frac{d^n q}{(2\pi)^n} \psi_{\mathbf{k}}(\mathbf{q})$.

$$
-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q < \frac{1}{\hbar}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon < E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}
$$

Bound state for arbitrarily small V_0 only if integral diverges for E \rightarrow 0

$$
-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q < \frac{1}{\hbar}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon < E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}
$$

Bound state for arbitrarily small V_0 only if integral diverges for E \rightarrow 0

In 2D (constant density of states): logarithmic divergence

$$
E_{2D} = -2E_R e^{-\frac{2\Omega}{\rho_{2D}|V_0|}}
$$

The Cooper problem:

Bound Electron Pairs in a Degenerate Fermi Gas*

LEON N. COOPER

Physics Department, University of Illinois, Urbana, Illinois (Received September 21, 1956)

Two fermions with weak interactions on top of a filled Fermi sea

Total momentum zero

Total momentum non-zero 2q

search for a small binding energy $E_B = E - 2E_F < 0$

$$
-\frac{1}{V_0} = \frac{1}{\Omega} \int_{E_F < \epsilon < E_F + E_R} d\epsilon \frac{\rho_{3D}(\epsilon)}{2(\epsilon - E_F) + |E_B|}
$$

Pauli blocking

$$
E_B = -2 E_R e^{-2\Omega/\rho_{3D}(E_F)|V_0|}
$$

search for a small binding energy $E_B = E - 2E_F < 0$

$$
-\frac{1}{V_0} = \frac{1}{\Omega} \int_{E_F < \epsilon < E_F + E_R} d\epsilon \frac{\rho_{3D}(\epsilon)}{2(\epsilon - E_F) + |E_B|}
$$

Pauli blocking

$$
E_B = -2E_R e^{-2\Omega/\rho_{3D}(E_F)|V_0|}
$$

After replacing the bare interaction V_{0} by the scattering length a

$$
E_B = -\frac{8}{e^2} E_F e^{-\pi/k_F|a|}
$$

Cooper Pairing

Consider two particles ↑, ↓, on top of a filled, "inert" Fermi sea

Total momentum zero

Total momentum non-zero

- Reduced density of states
- Much smaller binding energy

The important pairs are those with zero momentum

BCS Wavefunction

How can we find a state in which all fermionsare paired in a self-consistent way?

John Bardeen

Leon N. Cooper John R. Schrieffer

BCS Wavefunction

- Many-body wavefunction for a condensate of Fermion Pairs: $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \varphi(|\mathbf{r}_1-\mathbf{r}_2|)\chi_{12}\ldots\varphi(|\mathbf{r}_{N-1}-\mathbf{r}_N|)\chi_{N-1,N}$ Spatial pair wavefunction

Spin wavefunction

Spin wavefunction $\chi_{ij} = \frac{1}{\sqrt{2}} (|\!\uparrow\rangle_i \!\upharpoonleft \!\downarrow\rangle_j - |\!\downarrow\rangle_i \!\upharpoonright \!\uparrow\rangle_j)$
- Second quantization:

 $|\Psi\rangle_N = \int \prod d^3 r_i \, \varphi(\mathbf{r}_1 - \mathbf{r}_2) \Psi_1^{\dagger}(\mathbf{r}_1) \Psi_1^{\dagger}(\mathbf{r}_2) \dots \varphi(\mathbf{r}_{N-1} - \mathbf{r}_N) \Psi_1^{\dagger}(\mathbf{r}_{N-1}) \Psi_1^{\dagger}(\mathbf{r}_N) |0\rangle$

- Fourier transform: Pair wavefunction: Operators:
	- $\Psi_{\sigma}^{\dagger}(\mathbf{r}) = \sum_{k} c_{k\sigma}^{\dagger} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}$
- Pair creation operator:
- Many-body wavefunction: *a fermion pair condensate*

is not a Bose condensate

$$
\left|\Psi\right\rangle _{N}=b^{\dagger\,N/2}\left|0\right\rangle
$$

• Commutation relations for pair creation/annihilation operators

$$
[b^{\dagger}, b^{\dagger}]_{-} = \sum_{kk'} \varphi_k \varphi_{k'} \left[c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}, c^{\dagger}_{k'\uparrow} c^{\dagger}_{-k'\downarrow} \right]_{-} = 0 \quad \checkmark
$$

$$
[b, b]_{-} = \dots = 0 \qquad \checkmark
$$

$$
\left[b, b^{\dagger}\right]_{-} = \dots = \sum_{k} |\varphi_k|^2 (1 - n_{k\uparrow} - n_{k\downarrow}) \neq 1 \qquad \blacktriangleright
$$

Occupation of momentum *k*

• pairs do not obey Bose commutation relations, *unless*

$$
\left[b, b^{\dagger}\right]_{-} \approx \sum_{k} |\varphi_{k}|^{2} = 1
$$
 **BEC limit of
tightly bound molecules**

• Introduce coherent state / switch to grand-canonical description: $\label{eq:10} \mathcal{N}\left|\Psi\right\rangle \;\; =\sum_{J_{\rm even}}\frac{N_{p}^{J/4}}{(J/2)!}\left|\Psi\right\rangle _{J}\;\; =\sum_{M}\frac{1}{M!}N_{p}^{M/2}\;b^{\dagger\,M}\left|0\right\rangle$ $= e^{\sqrt{N_p} b^{\dagger}} |0\rangle$ and c_{ν} commute because • Normalization: • BCS wavefunction: with $v_k = \sqrt{N_p} \varphi_k u_k$ and $|u_k|^2 + |v_k|^2 = 1$

Many-Body Hamiltonian

- Second quantized Hamiltonian for interacting fermions:
-
- Contact interaction:
- Fourier transform via

$$
V(\mathbf{r}) = V_0 \delta(\mathbf{r})
$$

$$
\Psi_{\sigma}^{\dagger}(\mathbf{r}) = \sum_{k} c_{k\sigma}^{\dagger} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}
$$

$$
\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k',q} c_{k+\frac{q}{2}\uparrow}^{\dagger} c_{-k+\frac{q}{2}\downarrow}^{\dagger} c_{k'+\frac{q}{2}\downarrow} c_{-k'+\frac{q}{2}\uparrow}
$$

• BCS Approximation: Only include scattering between zero-momentum pairs

$$
\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k'} c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger c_{k'\downarrow} c_{-k'\uparrow}
$$

• Solve via 1) Variational Ansatz, 2) via Bogoliubov transformation

Variational Ansatz:

- Insert BCS wavefunction into Many-Body Hamiltonian.
- Minimize Free Energy:

$$
\mathcal{F} = \left\langle \hat{H} - \mu \hat{N} \right\rangle = \sum_{k} 2\xi_k v_k^2 + \frac{V_0}{\Omega} \sum_{k,k'} u_k v_k u_{k'} v_{k'}
$$
\n• Result:

\n
$$
v_k^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right)
$$
\n
$$
u_k^2 = \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right)
$$
\nwith

\n
$$
E_k = \sqrt{\xi_k^2 + \Delta^2}
$$
\n• Gap equation:

\n
$$
k / k_F
$$

$$
\Delta = -\frac{V_0}{\Omega} \sum_k u_k v_k = -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k}
$$

Solution via Bogoliubov Transform

• BCS Hamiltonian is quartic:

$$
\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k'} c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} c_{k'\downarrow} c_{-k'\uparrow}
$$

• Introduce pairing field (mean field or decoupling approximation):

$$
C_k = \langle c_{k\uparrow} c_{-k\downarrow} \rangle
$$

$$
c_{k\uparrow} c_{-k\downarrow} = C_k + (c_{k\uparrow} c_{-k\downarrow} - C_k)
$$

small fluctuations (assumption)

- Neglect products (correlations) of those small fluctuations
- Define

$$
\Delta = \frac{V_0}{\Omega} \sum_k C_k
$$

This plays the role of the condensate wavefunction

Solution via Bogoliubov Transform

• Rewrite Hamiltonian, drop terms quadratic in *C*'s:

$$
\hat{H} = \sum_{k} \epsilon_k (c_{k\uparrow}^{\dagger} c_{k\uparrow} + c_{k\downarrow}^{\dagger} c_{k\downarrow}) - \Delta \sum_{k} \left(c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} + c_{k\downarrow} c_{-k\uparrow} + \sum_{k'} C_{k'} \right)
$$

Hamiltonian is now bilinear

• Solve via Bogoliubov transformation to quasiparticle operators:

$$
\gamma_{k\uparrow} = u_k c_{k\uparrow} - v_k c_{-k\downarrow}^{\dagger}
$$
\n
$$
\gamma_{-k\downarrow}^{\dagger} = u_k c_{-k\downarrow}^{\dagger} + v_k c_{k\uparrow}
$$
\n• With the choice $v_k^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right)$ and $u_k^2 = \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right)$
\nwe get\n
$$
\hat{H} - \mu \hat{N} = -\frac{\Delta^2}{V_0 / \Omega} + \sum_k (\xi_k - E_k) + \sum_k E_k (\gamma_{k\uparrow}^{\dagger} \gamma_{k\uparrow} + \gamma_{k\downarrow}^{\dagger} \gamma_{k\downarrow})
$$
\n
$$
\begin{array}{c}\n\text{Ground state energy} \\
\gamma_{k\uparrow} | \Psi \rangle = 0\n\end{array}
$$
\nNon-interacting gas of fermionic quasi-particles

Solution of the gap equation $\Delta \equiv \frac{V_0}{\Omega} \sum_k \langle c_{k\uparrow} c_{-k\downarrow} \rangle = -\frac{V_0}{\Omega} \sum_k u_k v_k = -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k}$ $\Delta = -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k}$ $1 = -\frac{V_0}{\Omega} \sum_k \frac{1}{2E_k}$ $\frac{\Omega}{\Gamma} = \int \frac{d^3k}{\sqrt{1-\Omega^2}} \frac{1}{\sqrt{1-\Omega^2}}$

$$
-\overline{V_0} = \int \overline{(2\pi)^3} \, 2\sqrt{(\epsilon_k - \mu)^2 + \Delta^2}
$$

$$
-\frac{\Omega}{V_0} = \int d\epsilon \frac{\rho_3(\epsilon)}{2\sqrt{(\epsilon - \mu)^2 + \Delta^2}}
$$

Looks similar to equation for bound state and Cooper problem

Solution of the gap equation

• Gap equation:

$$
-\frac{\Omega}{V_0} = \int d\epsilon \; \frac{\rho_3(\epsilon)}{2\sqrt{(\epsilon - (\mu)^2 + (\Delta)^2)}}
$$

• Number equation:

$$
n = \langle \hat{n} \rangle = \sum_{k,\sigma} \left\langle c_{k,\sigma}^{\dagger} c_{k,\sigma} \right\rangle
$$

 \bullet Simultaneously solve for \upmu and Δ

Solution of the gap equation

Critical temperature

• Can be derived from Bogoliubov Hamiltonian with fluctuations

Experimental realization of the BEC-BCS Crossover

Preparation of an interacting Fermi system in Lithium-6

Electronic spin: $S = \frac{1}{2}$, Nuclear Spin: I = 1 \rightarrow (2I+1)(2S+1) = 6 hyperfine states

BEC of Fermion Pairs (Molecules)

 $T > T_C$ $T < T_C$ $T \ll T_C$

These days: Up to 10 million condensed molecules

Boulder Nov '03Innsbruck Nov '03, Jan '04 **MIT** Nov '03 Paris March '04 Rice, Duke

 $\frac{1}{2}$ 1x10^{6</sub>:
M.W. Zwierlein, C. A. Stan, C. H. Schunck, 0} S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

Observation of Pair Condensates BEC-Side Resonance BCS-Side (above dissociation limit for molecules) Radial density [a.u.] $-200 - 100$ $\mathbf 0$ 100 200 300 $-300 - 200$ -100 $\mathbf 0$ 100 200 300 $-300 - 200$ -100 $\mathbf 0$ 100 200 -300 300 Position [um] Position [um] Position [um]

Thermal + condensed pairs

First observation: C.A. Regal et al., Phys. Rev. Lett. **92**, 040403 (2004)

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

Condensate Fraction vs Magnetic Field

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

How can we show that these gases are superfluid?

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

